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A hierarchical co-rotational theory for analysis of geometrically nonlin-
ear shell structures has been developed that addresses attributes identified as de-
sirable: self-equilibrium, consistency, invariance, symmetrizability and element-
independence. The unified formulation recovers different existing co-rotational
formulations by making certain simplifying kinematic and static assumptions.
This unification offers additional flexibility to finite element developers in that
tradeoffs between simplicity, robustness and generality can be more clearly un-
derstood.

The nonlinear response of the co-rotational finite element models is ob-
tained by incremental/iterative continuation methods. The equilibrium-path-
following algorithm combines a standard arc length predictor phase with two
alternative versions of a true-Newton corrector phase: the normal-plane correc-
tor of Riks-Wempner and the orthogonal trajectory accession corrector proposed
by Fried. The algorithm is treated with scaling techniques that aim to make the
solution algorithm performance insensitive to discretization changes. Numerical
experiments indicate that the orthogonal trajectory corrector in general outper-
forms the normal plane corrector in terms of robustness and allowance of larger
stepsizes when tracing smooth response paths.

A modification of the predictor-corrector continuation algorithm to de-
tect and handle traversal of bifurcation points has been developed. The modified
algorithm relies on linearized buckling analysis carried out at two “bracketing”
configurations in the neighborhood of the bifurcation point. The estimated buck-
ling mode is used to initiate branch switching into the outgoing (secondary) path.
The normal plane corrector constraint is modified to avoid the “switch-back”
to the incoming (primary) path. This modification has proven to be robust in
handling symmetric bifurcation points in the test problems reported here.

A new four-noded quadrilateral shell element has been developed based
on the Assumed Natural-coordinate Deviatoric Strains formulation. This ele-
ment is derived with reference to a flat geometry defined by the medians of
the generally-warped quadrilateral. Projector matrices are used to fulfill self-
equilibrium conditions in the warped geometry. The numerical results indicate
that then new quadrilateral element delivers modeling accuracy similar to that
of existing Free Formulation elements, but without the burden of numerical
inversion to form the higher order stiffness.
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Chapter 1

Introduction.
Because of their high-strength and lightweight nature, aerospace structures often
fail by elastic buckling. Furthermore, a structure or structural component may
behave elastically while well into the post-buckling regime. Designers checking
stability are often interested in questions of the following nature: can the struc-
ture, after overall buckling, maintain functionality in some sense? and, can the
structure withstand localized buckling and post-buckling of a component? These
questions are typical for aircraft-structures that are often critically designed by
counting on load-carrying capability in the post-buckling range.

These considerations explain why reliable stability and post-buckling
analysis tools are important components of the design of aerospace structures.
One important analysis simplification is the assumption that material deforma-
tions stay small – usually in the elastic range – before and after buckling. This
simplification has important benefits in constructing finite element models for
stability analysis. It allows the use of linear finite element models to capture
the deformational response whereas the large rigid-body motions characteristic
of post-buckling are treated separately.

The co-rotational formulation of geometrically nonlinear analysis is
based upon such explicit separation of rigid-body motions – translations and
rotations – from deformational motions. This treatment “segregates the non-
linearity” into the former. The key benefit gained through this approach is
“reuse”: existing linear finite element models can be taken advantage of. Given
the large investments made into the development of finite element libraries, in-
cluding many years of fine tuning to efficient handle a spectrum of problems,
reuse makes investment sense as long as users of programs based on the co-
rotational formulation are aware of certain modeling limitations.

1.1 Survey of related work.

The present work focuses on the co-rotational finite element analysis of nonlinear
shell structures. Thus it represents a fusion of three largely independent topics:
the co-rotational formulation, the computation of the nonlinear response by con-
tinuation algorithms, and the construction of shell finite elements. A historical
account of these topics is provided in the following sections.
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1.1.1 Nonlinear co-rotated formulations.
The concept of a co-rotated formulation was first introduced by Wempner [64] in
1969 and by Belytschko and co-workers [10] in 1973. In 1976 Fraeijs de Veubeke
[30] developed a co-rotated formulation for dynamic analysis of structures using
a single co-rotated frame for the whole structure. De Veubeke’s approach was
geared towards analytical solutions rather than finite element formulations. The
concept of a rotating frame attached to the elements was also used by Bergan
and Horrigmoe [12,34] and Argyris [4]. In 1986 Rankin and Brogan introduced
an element independent co-rotated formulation [52], which was later refined by
Nour-Omid and Rankin [46,53]. Cardona [19] used the co-rotational consept for
analysis of mechanisms in 1989. A co-rotational formulation for beam elements
was developed by Crisfield [22] in 1990.

The starting point of the present research work has been the co-rotated
formulation that started with Bergan and Horrigmoe [12,34] and has been further
developed by Nyg̊ard [47], Levold [40], Mathisen [42] and Bjærum [17]. This
formulation exploits the concept of a co-rotated orthonormal frame that is flex-
ibly attached to the deformable element. The motion of the element frame also
determines the motion of a rigid undeformed element, often called “ghost refer-
ence” or “shadow element”. This formulation has proven satisfactory for many
applications. For some problems, however, the formulation exhibits deficiencies,
most notably with respect to consistency of the tangent stiffness with respect to
the residual forces, and self-equilibrium of warped quadrilateral elements.

Several of these problems were also experienced by Rankin and Brogan
[52] in their initial version of the element independent co-rotational formulation.
Nour-Omid and Rankin [46,53] later addressed the questions of consistency and
equilibrium. However, the current formulation of Nour-Omid and Rankin still
places restrictions on how many degrees of freedom can participate in the rota-
tion of the element frame while maintaining consistency of the tangent stiffness.
These constraints lead to loss of mesh invariance; that is, the computed solution
may depends on node numbering.

The present work tries to combine the best features of both co-rotational
formulations. More specifically, the invariant nature of the Bergan et al. formu-
lation, and the equilibrium and consistency of the Rankin et al. formulation.

2



1.1.2 Nonlinear solution algorithms.

There has been rapid progress over the last 20 years in algorithms for computing
equilibrium solutions of geometrically nonlinear structural problems. Before the
mid-1970s, such problems were usually treated with purely incremental methods
under load control. Purely incremental methods have the important disadvan-
tage that the accumulated drift error causes computed solutions to move away
from the equilibrium path. Since those methods do not check residuals, the
accumulated drift error can be practically assessed only by running the problem
with smaller increments. In addition, load control makes automatic traversal of
critical points difficult or impossible.

The drift-error disadvantage was eliminated with the introduction of in-
cremental/iterative methods, in which a predictor step was followed by Newton-
like corrective iterations to move back the solution onto the equilibrium path.
The problem of traversing critical points, which is of crucial importance in non-
linear analysis, required modifications to the control strategy enforced during
the corrector phase so as to allow both displacements and loads to change si-
multaneously. Early attempts to address the problem of critical point traversal
in the 1960s resulted in the development of displacement control [2], and the
introduction of artificial springs [56,67]. Refinement of the former evolved into
the hyperplane displacement control method [59] in the early 1980s.

The arc length control method, which presently has become one of the
most widely used incremental/iterative techniques, was independently proposed
in the early 1970s by Riks [54] and Wempner [65] . This method, however,
did not attract attention until popularized by Crisfield [20] in the early 1980s.
Since then additional refinements of the arc length method and its variants have
been published at an accelerated pace. Key contributions are by Bathe et al. [
5,6], Batoz and Dhatt [8], Crisfield [21], Ramm [51] and Riks [55]. In addition,
the orthogonal trajectory accession method of Fried [31] merits attention in
that, unlike the conventional arc length methods, the corrector iterations are
not controlled by an algebraic constraint.

1.1.3 Linear finite elements.
The Free Formulation (FF for short) was developed by Bergan and coworkers
at Trondheim during the period 1972-1984. The development of the FF began
with a landmark paper by Bergan and Hanssen [11] . This paper introduces
the Individual Element Test (IET), which sets forth a priori conditions for an
element to pass the Patch Test. A “final” form of the FF was described in a paper
by Bergan and Nyg̊ard [14]. The FF stiffness matrix consists of two contributions
called basic and higher order respectively. The basic stiffness is constructed
in accordance with the IET, and thus ensures satisfaction of the Patch Test.
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The higher order stiffness is constructed in order to obtain correct rank and to
improve performance of the element. Bergan and Felippa [15] argued that the
higher order stiffness can be scaled with a positive number without violating the
IET. This Scaled FF was incorporated in the framework of variational calculus
by Felippa and Militello [25,26,44] who showed that the Scaled FF was derivable
from a parametrized hybrid variational principle.

The Assumed Natural Strain (ANS) formulation was developed in the
early 1980 by several investigators [7,36,41,58]. The name was coined by Park
and Stanley while developing a nine node shell element [49]. The basic ANS
technique was adopted to the basic plus higher order decomposition by Militello
and Felippa, who called this variant the Assumed Natural Deviatoric Strains
(ANDES) formulation [45,44]. This formulation allowed increased flexibility
compared to the FF in that the higher order strains where no longer restricted
to be consistent with higher order displacement modes.

Often the two formulations: FF and ANDES, give identical elements, as
in the case of the “optimal” three node membrane element with drilling degrees
of freedom based on the Extended FF and the ANDES formulations [1,27]. When
coalescence occurs the ANDES formulation is usually more computationally ef-
ficient since it shortcuts the complicated transformation from generalized modes
to visible degrees of freedom, a task that often has to be carried out numerically
for the FF elements.

1.2 Dissertation outline.
Chapter 2 of the present work starts out with a description of the finite-
displacement motion of a co-rotated medium. This description is discretized
to a subdomain or finite element of the structural continuum, where the neces-
sary expressions for an “element independent” tangent stiffness are developed.
The present formulation is then compared to two similar formulations, namely
those of Bergan et al. [17,42,47] and Rankin et al. [46,53] with respect to the
key properties of equilibrium, consistency and invariance.

Chapter 3 discusses the global nonlinear equilibrium equations for ge-
ometrically nonlinear structures with emphasis on methodology to construct
response tracing algorithms. A generalized arc-length type algorithm is then
developed. The algorithm is shown to include such algorithms as load control,
displacement control and state control as special cases. The section compares
the normal-plane corrector of Riks and Wempner [54,55,65] and the orthogonal
trajectory corrector developed by Fried [31] are compared. The detection of
critical points such as limit points and bifurcation points is discussed, and a
procedure for branch switching based on linearized buckling analysis is devel-
oped.
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Chapters 4 and 5 describe three node and four node linear shell ele-
ments, respectively. These chapters also cover specific extensions necessary to
include these shell elements in the co-rotated nonlinear formulation described
in Chapter 2. The four node element is a new shell element based on the AN-
DES formulation, whereas the three node element is the ANDES shell element
developed for linear analysis by Militello and Felippa [27,45]. The nonlinear
extensions for the elements are compared to the formulations of Bergan et al.
[47] and Rankin et al. [53].

Chapter 6, 7 and 8 present numerical results obtained with the present
co-rotational formulation on a wide spectrum of shell and space-beam problems.
Chapter 6 presents linear static problems and evaluates the three and four node
plate, membrane and shell elements relative to existing elements. Chapter 7
presents linearized buckling problems. These problems assess the performance
of the geometric stiffness of the elements without putting the finite displacement
formulation to any severe tests, since these problems pertain to linearized pre-
buckling. Truly nonlinear problems are presented in Chapter 8. These problems
embody finite displacements and rotations as well as traversal of critical points
of limit and bifurcation types.

Finally, Chapter 9 summarizes the achievements of the present research
work and suggests directions for further research.
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Chapter 2

Co-rotational Formulation of Geometrically Nonlinear
Problems.

2.1 Previous work.
As mentioned in the Introduction, the co-rotated formulation explicitly sepa-
rates rigid-body and deformational components of the motion. This idea can
be translated to a finite element framework by effecting the separation at the
element level. Specific techniques for carrying out this separation have varied
according to the taste and background of the investigators that developed these
formulations. Two approaches: shadow element and projectors, are considered
here.

The concept of a shadow configuration was first described by Fraeijs de
Veubeke for a complete structure [30]. This paper clearly states: “We therefore
try to define a set of Cartesian mean axis accompanying the body, or dynamic
reference frame, with respect to which the relative displacements, velocities or
accelerations of material points due to deformations are minimal in some global
sense. If the body does not deform, any set of axes fixed into the body is of
course a natural dynamic reference frame.” The determination of such frames for
a complete structure, however, is a difficult problem and not satisfactorily solved
as yet if the deformations are large. The difficulties are circumvented by selecting
a frame for each individual element, and assuming that the deformations with
respect to this frame are small in some sense.

The concept of shadow configuration was taken to the element level
by Bergan and Nyg̊ard [16,47]. In this work the shadow element was coined
“ghost-reference”. Such a concept is a useful visualization tool, and can help
the understanding of the co-rotated formulation. The shadow element concept
was used by Bergan and Nyg̊ard to separate out the rigid body motion of each
element to extract its deformational motion, from which the internal force vector
of the element is computed. However the derivatives of these co-rotated internal
forces were not not used directly in forming the tangent stiffness, which leads to
a loss of consistency.

The formulation of Rankin and Brogan [52] and the later refinements
of Nour-Omid and Rankin [46] does not explicitly use the concept of a shadow
element, but the way of extracting the deformational displacements is similar
to that of Bergan and Nyg̊ard. These authors used the co-rotated formulation
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directly to form the tangent stiffness, which thus provides a consistent stiff-
ness with respect to the internal forces. The work relies heavily on the use of
projection operators.

Other important contributions to the co-rotational formulation of geo-
metrically nonlinear finite elements are those of Argyris [4] and Crisfield [22].
It should be mentioned that the term “co-rotational” as used by the structural
mechanics community has evolved to be differentiated clearly from two related
kinematic descriptions: Updated Lagrangian and convected-coordinat formula-
tions. The latter are characterized by the moving configuration being referred
to a generally curvilinear coordinate system, which requires the metric of indi-
vidual elements to be updated as the motion progresses. In the co-rotational
formulation such system remains Cartesian. This is the source of both com-
putational advantages (reuse of existing elements) and disadvantages (choice of
unnatural strain-displacement relations for some elements).

2.2 Organization of present chapter.

This Chapter starts with a description of motion for an element undergoing finite
displacements and rotations but small deformations. The co-rotated description
with shadow element is adopted to enhance visualization. This description is
applied to finite elements with both translational and rotational nodal degrees
of freedom. The finite element equations for the present formulation are derived,
and following this, a set of requirements for judging the adequacy of a co-rotated
formulation is established. These requirements are used to review and evaluate
different “schools” of co-rotated formulations for geometrically nonlinear prob-
lems.

This organization has been chosen because introducing the present for-
mulation first develops useful expressions and vocabulary. Several co-rotated
formulations can then be discussed in a unified fashion, using the present nota-
tion, without the need to specialize such discussion with different terminology.

2.3 Description of motion for co-rotated formulation.

Consider an individual element as shown in Figure 2.1. Its initial configuration
is denoted by C0. This configuration is referred to a local coordinate system
defined by the triad of unit orthogonal vectors (i01, i

0
2, i

0
3), referred to a global

system defined by (I1, I2, I3). The transformation of a vector x referred to the
global system to the same vector expressed in local system as x̃ can be written

x̃ = T0x and x = TT
0 x̃ where T0 =


 i0

T

1

i0
T

2

i0
T

3


 . (2.3.1)
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initial or reference  
           C0 

deformed 
     Cn "shadow" 

     C0n 

Figure 2.1. The reference, “shadow” and deformed configurations
of an element.

The motion of the element under slowly applied loads carries it to a
deformed configuration, denoted by Cn. Subscript n will be later identified with
the nonlinear solution step in an incremental analysis, but for the present will
be left generic. The rigid body motion undergone by the element brings the
initial configuration C0 to the shadow configuration C0n. Both the deformed
element Cn and the shadow element C0n are referred to a common local coordi-
nate system defined by the triad of orthonormal vectors (in1 , i

n
2 , i

n
3 ). This local

coordinate system triad is body-attached to the shadow element, and follows
through its rigid body motions.

The position of the shadow element C0n is obtained by a closest possible,
or “best fit”, of the initial element C0 to the deformed element through a rigid
body translation uc and rigid body rotation R0n. If the centroids of Cn and C0n

coincide, the rigid body translation uc is given as the translation of the centroid
of the element. The use of the term “centroid” refers here to the arithmetic
average of the nodal coordinates of an element. This “centroid” does not in
general coincide with the mass center of an element.

The common coordinate system of the Cn and C0n configurations is ob-
tained from the rigid body rotation of the base vectors of the initial configuration
:

ini = R0ni0i ⇔ TT
n = R0nTT

0 . (2.3.2)
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Figure 2.2. Nodal translations using a shadow element representation.

Because T0, Tn and R0n are orthonormal matrices, R0n can be extracted on
postmultiplying (2.3.2) by T0 :

R0n = TT
nT0 and RT

0n = TT
0 Tn. (2.3.3)

2.3.1 Translation of an element node from C0 to Cn.
Consider an element node that moves from the initial position r0 to its deformed
position rn. The nodal displacement vector is given by

rn = r0 + u ⇒ u = rn − r0 . (2.3.4)

This displacement can be split, in accordance with the co-rotational approach,
into a rigid body and a deformational component:

u = ur + ud . (2.3.5)

The rigid body displacement ur is given by the difference in position of the node
in the initial C0 and co-rotated C0n configurations. Similarly the deformational
displacement ud is given by the difference between the co-rotated and deformed
configurations C0n and Cn :

ur = r0n − r0,

ud = rn − r0n,
where

r0 = r0
c + x0,

r0n = r0
c + uc + R0nx0,

(2.3.6)
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Figure 2.3. Nodal rotations using a shadow element representation.

and x0 contains the coordinates of the node in the initial configuration relative
to the element centroid. Combining these equations gives

ur = uc + (R0n − I)x0. (2.3.7)

The deformational translation can be extracted as

ud = u − ur = u − (uc + (R0n − I)x0)

= u − uc − (R0n − I)x0.
(2.3.8)

The deformational translation referred to the local coordinate system becomes

ũd = Tnud = ũ − ũc − Tn(R0n − I)TT
n x̃0

= ũ − ũc − (R̃0n − I)x̃0,
(2.3.9)

where quantities measured in the local (co-rotated) coordinate system are identi-
fied with superposed tildes. In equation (2.3.9), x̃0 denotes the nodal coordinate
vector of the shadow element with respect to that system:

x̃0 = T0x0 = Tnx0n. (2.3.10)

2.3.2 Rotation of an element node from C0 to Cn.
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The rotation of a node as it moves from its initial position in the C0 configu-
ration to its deformed position in the Cn configuration can be described by the
rotation tensor R. Proceeding as in the translational analysis, R is assumed to
be decomposed into a rigid body rotation R0n and a deformational rotation Rd

as:
R = RdR0nI . (2.3.11)

Note, however, that the opposite decomposition of the deformational rotation
first followed by the rigid body rotation is not equivalent since RdR0n �= R0nRd.
The choice of rotation order in (2.3.11) is consistent with Bergan et al. and
Rankin et al. From equation (2.3.3) and (2.3.11) the deformational rotation in
the global system can be extracted as

Rd = RRT
0n = RTT

0 Tn . (2.3.12)

This deformational rotation can be expressed in the (co-rotated) local coordinate
system of C0n and Cn as

R̃d = TnRdTT
n = TnRTT

0 . (2.3.13)

The deformational rotation measured by either (2.3.12) or (2.3.13) is
assumed to be small but finite. Therefore, a procedure to extract a rotation
pseudo-vector from a given rotation tensor is needed. This pseudo-vector can
be subsequently identified with the deformational rotational degrees of freedom
θd carried out at each node.

2.3.3 Rodrigues representation of the rotation tensor.

The Rodrigues formula for expressing the rotation tensor from a rotation θ

about an axis given by the unit vector n can be obtained from purely geometric
considerations [4]. This representation is also consistent with an exponential
mapping of rotations [4,46,57].

A rotation of a vector r0 through an angle θ about an axis oriented
through the unit vector nT = [n1 n2 n3 ] gives a new vector r that can be
represented as

r = Rr0 where R = (I + N sin θ + N2(1 − cos θ)) (2.3.14)

and

N = Spin(n) =


 0 −n3 n2

n3 0 −n1

−n2 n1 0


 , (2.3.15)
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N2 = nnT − I =


n1n1 − 1 n1n2 n1n3

n2n1 n2n2 − 1 n2n3

n3n1 n3n2 n3n3 − 1


 . (2.3.16)

Substitution of (2.3.15) and (2.3.16) into (2.3.14) yields the explicit form in
terms of the rotation axis and angle

R(n, θ) =


 1 + (1 − c)(n2

1 − 1) (1 − c)n1n2 − n3s (1 − c)n1n3 + n2s
(1 − c)n2n1 + n3s 1 + (1 − c)(n2

2 − 1) (1 − c)n2n3 − n1s
(1 − c)n3n1 − n2s (1 − c)n3n2 + n1s 1 + (1 − c)(n2

3 − 1)


 ,

(2.3.17)
where c = cos θ and s = sin θ. If R(n, θ) is given, the rotation axis n and
rotation angle θ can be extracted as

d1 = n1 sin θ =
1
2
(R32 −R23) ,

d2 = n2 sin θ =
1
2
(R13 −R31) ,

d3 = n3 sin θ =
1
2
(R21 −R12) .

(2.3.18)

Since (n2
1 + n2

2 + n2
3) = 1, we have

sin θ =
√
d2
1 + d2

2 + d2
3 and



n1

n2

n3


 =

1
sin θ



d1

d2

d3


 . (2.3.19)

The rotation vector θ associated with the rotation tensor is then given as

θ = θn =
θ

sin θ



d1

d2

d3


 . (2.3.20)

Observe that as θ → 0, θ → d . Some care should be exercized if θ is very
small because θ/ sin θ approches 0/0. In order to avoid numerical difficulities
the fraction θ/ sin θ should be set to 1 for small angles, e.g. θ < 1.0−8, or a
truncated Taylor series for, say θ < 1.0−2, can be used.

The present expressions for obtaining the rotation tensor R as a function
of the pseudo-vector θ in equations (2.3.14) and (2.3.17) can be formally
expressed the using exponential mapping of rotations as

R(θ) = eSpin(θ) . (2.3.21)

The inverse relationship for obtaining the pseudo-vector θ from the rotations
tensor R, as described by equation (2.3.18), (2.3.19) and (2.3.20), can be
compactly expressed as

θ = Axial(Spin(θ)) = Axial(ln(eSpin(θ))) = Axial(ln(R)) . (2.3.22)
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2.3.4 The deformational displacement vector.

An element with N nodes has initial coordinates x0
a, where a is used as nodal

index. The finite displacement state of the element is described by the nodal
translational displacement ua and the rotational orientation Ra of the nodes.
The set (ua,Ra) for a = 1, . . . N collectively defines the visible nodal displace-
ment vector v̂; where the qualifier “visible” means that those quantities are
“seen” by nodes of adjacent elements. Note, however, that v̂ may not consti-
tute a vector in the conventional sense because the components of the nodal
finite-rotation tensors Ra do not transform as vectors. The interpretation of
v̂ as an array of numbers that defines the position of the deformed element is
more appropriate. The displacement vector notation used in the present work
is summarized in Box 2.1.

The goal is to establish the deformational nodal displacement vector vd

for the element based on the finite displacement state of the nodes given by v̂.
This vector vd contains translational and rotational degrees of freedom for each
node ordered as

vd =




ud1

θd1
...

udN

θdN



. (2.3.23)

The sequence of operations required to obtain vd, given x0
a, ua and Ra, is

compiled in Box 2.2.
This procedure of forming the deformational displacement vector vd

should be seen in context with the updating procedure for the global displace-
ment state v̂ described in Box 3.1, of Chapter 3.
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Box 2.1. Displacement vector notation.

v̂ : Represents the total displacement state at both element and
global level. The nodal translations are represented as the
vector ua, and the nodal rotations by the rotation tensor Ra.
The set (ua,Ra) for each node represents the “array” v̂ that
defines the position of the structure or element. All quantities
are referred to an inertial coordinate system.

vd : Deformational displacement vector for an element. The vector
exists only at the element level. The translations and rota-
tions are finite quantities, but in general much smaller than
the global displacements in v̂. The translations are repre-
sented by the vector uda, and the rotations by the rotational
pseudovector θda. For an element this is collected in the vec-
tor

vT
d = [ud

T
1 θd

T
1 · · · ud

T
N θd

T
N ]

measured in the co-rotated coordinate system of the element
or the inertial system.

v, δv : The visible degrees of freedom for an incremental/iterative so-
lution algorithm. The translations are incremental displace-
ment vectors δua and the rotational increment is represented
by the instantaneous rotation axis δωa. A displacement in-
crement is represented by the vector:

δvT = [ δuT
1 δωT

1 · · · δuT
N δωT

N ]
referred to an inertial coordinate system.
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Box 2.2. Forming the deformational displacement vector.

Establish the initial local coordinate system T0 from the initial nodal
coordinates x0

a and form the nodal coordinates in the local system:

x̃0
a = T0(x0

a − x0
c), where x0

c =
1
N

N∑
a=1

x0
a. (2.3.24)

Establish the deformed local coordinate system Tn from the deformed
coordinates xn

a = x0
a +ua and form the nodal coordinates in the local

system:

x̃n
a = Tn(xn

a − xn
c ), where xn

c =
1
N

N∑
a=1

xn
a . (2.3.25)

for each node a = 1, . . . N do
Compute the deformational translations

ũda = x̃n
a − x̃0

a

Compute the deformational rotations
θ̃da = Axial(ln(R̃d)) where R̃d = TnRaTT

0

(2.3.26)
end do

Collect in the element deformational displacement vector
ṽT
d =

[
ũd

T
1 θ̃d

T

1 · · · ũd
T
N θ̃d

T

N

]
. (2.3.27)
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2.4 Variation of the deformational displacements.

The variation of the element deformational displacement vector vd with respect
to the element visible degrees of freedom v can be expressed as the matrix
relationship

δvR
d =

∂vR
d

∂v
δv , (2.4.1)

where δ denotes an admissible variation in the sense of variational calculus. It is
important to notice that the relationship sought is the variation of the corotated
displacements vR

d with respect to the inertial visible degrees of freedoms v.
Vector vd and v are summarized in Box 2.1. Superscript ( R ) is used to stress
that a quantity is measured in a rotating frame. To establish the relationship in
equation (2.4.1) one needs to obtain the variations of the co-rotated coordinate
system of the shadow element represented by Tn, and the rigid body rotation
of the shadow element represented by the rotation matrix R0n. These matrices
are related as shown in equation (2.3.3).

2.4.1 Variation of the transformation matrix Tn.
The variation of Tn is entirely defined by its variation with respect to the in-
stantaneous rotation axis ω̃, where ω̃ is measured in the local inertial coordinate
system:

δTn =
∂Tn

∂ω̃i
δω̃i

=


 0T

in3
T

−in2
T


 δω̃x +


−in3

T

0T

in1
T


 δω̃y +


 in2

T

−in1
T

0T


 δω̃z

=


 0 δω̃z −δω̃y
−δω̃z 0 δω̃x
δω̃y −δω̃x 0





 in1

T

in2
T

in3
T


 = −Spin(δω̃)Tn .

(2.4.2)

Because Spin(ω̃) = TnSpin(ω)TT
n and Tn is orthogonal it follows that

δTn = −Spin(δω̃)Tn = −TnSpin(δω) . (2.4.3)

Furthermore, since Spin(δω) is anti-symmetric,

δTT
n = TT

nSpin(δω̃) = Spin(δω)TT
n . (2.4.4)
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2.4.2 Variation of the rotation matrix R0n.
Equation (2.4.3) can be used to find the variation of the rigid body rotation
tensor R0n = TT

nT0:

δR0n = δTT
nT0 + TT

n δT0 = δTT
nT0 = Spin(δω)TT

nT0

= Spin(δω)R0n .
(2.4.5)

Referring this variation to the local coordinate system gives

δR̃0n = TnδR0nTT
n = Spin(δω̃)R̃0n . (2.4.6)

If the variation is taken about θ̃ = 0 one has R0n = I, and thus

δR̃0n

∣∣∣
θ̃→0

= Spin(δω̃) . (2.4.7)

2.4.3 Variation of inertial ud with respect to inertial v .

The centroid displacement uc of a N node element can be defined as the average
of the nodal displacements:

uc =
1
N

N∑
a=1

ua . (2.4.8)

Specializing equation (2.3.8) to node a gives the following expression for its
deformational translation:

uda =
N∑
b=1

Pabub − (R0n − I)x0
a where Pab = (δab −

1
N

) I. (2.4.9)

Its variation is

δuda =
N∑
b=1

Pabδub − δR0nx0
a , (2.4.10)

since δPab = 0, δI = 0 and δx0
a = 0. Substituting (2.4.5) for δR0n gives

δR0nx0
a = Spin(δω)R0nx0

a = Spin(δω)x0n
a = −Spin(x0n

a )δω

= −Spin(x0n
a )G δv ,

(2.4.11)

where matrix G connects the variation of the rigid body rotation to the variation
of the visible node displacements:

δω = Gδv =
N∑
a=1

Ga δva . (2.4.12)
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G is an element dependent matrix that can be split in its nodal submatrices
Ga as indicated above. The matrix G for three and four node shell elements is
described in Sections 4.5 and 5.5 respectively.

Introducing (2.4.11) into (2.4.10) provides the variation of the nodal
deformational displacements:

δuda =
N∑
b=1

([Pab 0 ] + Spin(x0n
a )Gb) δub . (2.4.13)

When transforming to local coordinate system one should keep in mind the
relationship

x̃0
a = T0x0

a = Tnx0n
a , (2.4.14)

which simply states that the coordinates of the shadow element in local coordi-
nate system are constant. Consequently, transformation of (2.4.13) to the local
coordinate system gives

δũda =
N∑
b=1

([ P̃ab 0 ] + Spin(x̃0
a)G̃b) δṽb , (2.4.15)

in which ṽb contains both the translational and rotational inertial degrees of
freedom of a node b as δṽT

b = [ δũT
b δω̃T

b ].

2.4.4 Variation of co-rotated ud with respect to inertial v .

The variation of an arbitrary vector in an inertial frame can be expressed as

δx = δxR + δω × x , (2.4.16)

where δxR is the variation of the vector in the co-rotating frame and δω is
the inertial rotation of that frame. This expression can be used to obtain the
variation of the deformation vector ud in the rotating frame δuR

d in terms of its
variation in the inertial frame δud. Recall the relationship

xn
a = x0n

a + uda , (2.4.17)

between the nodal coordinates of the shadow element x0n
a and the coordinates

of the deformed element xn
a . Taking the variation of xn

a in the inertial frame
gives

δxn
a = δx0n

a + δuda = δuda + Spin(δω)x0n
a = δuda − Spin(x0n

a )δω

=
N∑
b=1

Pabδub,
(2.4.18)
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where (2.4.13) has been used in the last transformation. Taking the variation
of xn

a in the co-rotating frame gives

δxRn
a = δxR0n

a + δuR
d a = δuR

d a , (2.4.19)

because the coordinates of the shadow element x0n
a are constant in the co-

rotating frame. Substituting (2.4.18) and (2.4.19) into (2.4.16) and solving
with respect to δuR

d a gives

δuR
d a =

N∑
b=1

Pabδub − δω × xn
a =

N∑
b=1

Pabδub − Spin(δω)xn
a

=
N∑
b=1

Pabδub + Spin(xn
a) δω =

N∑
b=1

([Pab 0 ] + Spin(xn
a)Gb) δvb .

(2.4.20)
Transforming this expression to the local coordinate system:

δũR
d a =

N∑
b=1

([ P̃ab 0 ] + Spin(x̃n
a)G̃b) δṽb , (2.4.21)

which gives the variation of the co-rotated ũd with respect to the inertial visible
degrees of freedom ṽ.

Note that the only difference between the variations δũda in the inertial
coordinate system and the rotating coordinate system is that equation (2.4.15)
contains the shadow element coordinates in Spin(x̃0

a), whereas equation (2.4.21)
contains the deformed element coordinates in Spin(x̃n

a).

2.4.5 Variation of co-rotated θd with respect to co-rotated ωd.

Equation (2.3.26) gives the deformational pseudovector θda at a node a in the
compact form

θda = Axial(ln(Rda). (2.4.22)

The variation of θda with respect to the inertial visible degrees of freedom re-
quires its variation with respect to the instantaneous deformational rotation
ωda:

δθda =
∂θda

∂ωda

δωda = Haδωda . (2.4.23)
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This relationship is given by Nour-Omid and Rankin [46] based on the inverse
relationship of equation (2.4.23) as established by Simo [57] and Szwabowicz
[62]. Equation (A.14) of Ref. [46] gives

H =
∂θ

∂ω
= I − 1

2Spin(θ) + η Spin(θ)2 , (2.4.24)

where

η =
sin( 1

2θ) − 1
2θ cos( 1

2θ)
θ2 sin( 1

2θ)
and θ =

√
θTθ = ‖θ‖ . (2.4.25)

Observe that for θ → 0, η → 0/0, which amplifies computational errors for small
rotation angles. To circumvent this difficulty, η is computed from a truncated
power series for small values of θ :

η ≈ 1
12 + 1

720θ
2 + 1

30240θ
4 for θ < 0.05 radians . (2.4.26)

This series establishes that η
∣∣
θ→0

= 1
12 .

2.4.6 Variation of co-rotated θd with respect to inertial v.

The instantaneous deformational rotation ωda of a node a is the difference be-
tween the instantaneous nodal rotation and the rigid body rotation of the ele-
ment:

ωda = ωa − ωr . (2.4.27)

Varying this vector gives

δωda = δωa − δωr = δωa −
∂ωr

∂vi
δvi

= δωa − G δv .
(2.4.28)

Hence
δωr =

∂ωr

∂vi
δvi = G δv (2.4.29)

which gives the variation of the instantaneous deformational rotation as

δωda =
N∑
b=1

(δab [0 I ] − Gb) δvb , (2.4.30)

where δvb contains both the translational and rotational degrees of freedom of a
node b as δvT

b = [ δuT
b δωT

b ]. Finally, combining equation (2.4.23) and (2.4.30)
gives the varaition of the co-rotated deformational nodal rotation pseudo-vector
θda with respect to the visible degrees of freedom v as

δθda =
∂θda

∂ωda

N∑
b=1

∂ωda

∂ωb
δωb = Ha

N∑
b=1

(δab [0 I ] − Gb) δvb . (2.4.31)
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2.4.7 Variation of co-rotated vd with respect to inertial v.

Collecting the translational and rotational variations in equations (2.4.21) and
(2.4.31), the variation of the co-rotated deformational degrees of freedom vd

with respect to the visible inertial degrees of freedom v (both vectors defined in
Box 2.1) can be compactly expressed as

δvR
d = HPδv , (2.4.32)

in which

H =


H11 · · · 0

...
. . .

...
0 · · · HNN


 with Haa =

[
I 0
0 Ha

]
, (2.4.33)

where Ha is defined in Section 2.4.5, and P is a nonlinear projection operator
(often called “projector” for brevity) expressible as

P = (I − PT − PR) . (2.4.34)

In this expression PT accounts for the centroid translation of the element:

PT =




PT 11 · · · PT 1N
...

. . .
...

PTN1 · · · PTNN


 with PT ab =

[
1
N I 0
0 0

]
, (2.4.35)

whereas PR accounts for the nodal displacement components from the rigid
body rotation about the element centroid:

PR = SG =



−Spin(xn

1 )
I
...

−Spin(xn
N )

I


G . (2.4.36)

Here S is a matrix defined by the bracketed expression. G is defined in general
terms in equation (2.4.12) and for three and four node shell elements in Sections
4.5 and 5.5 respectively.
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2.4.8 Properties of the projector matrix.

If the matrix P defined in equation (2.4.34) is to behave as a true projector
it must verify that P2 = P. The physical meaning of this property is that
a second projection does not alter an already projected vector. Expansion of
equation (2.4.34) gives

PP = (I − PT − PR)(I − PT − PR)

= I − 2PT − 2PR + PTPT + PTPR + PRPT + PRPR

= I − PT − PR = P .

(2.4.37)

In order to prove this result the following identities must be verified:

PTPT = PT , PRPR = PR , PTPR = 0 , PRPT = 0 . (2.4.38)

Proof that PTPT = PT . By considering a generic ab submatrix of PTPT it is
verified that

(PTPT )ab =
N∑
c=1

PT acPT cb =
N∑
c=1

[
1
N2 I 0
0 0

]
=

[
1
N I 0
0 0

]
= PT ab , (2.4.39)

where a, b and c are node indecies.

Proof that PRPR = PR.

PRPR = SGSG = SIG = SG = PR (2.4.40)

The identity
GS = I , (2.4.41)

used in (2.4.40) holds because the columns of S are simply displacement vectors
associated with the rigid body rotations θx = 1, θy = 1 and θz = 1, respectively.
Each of these displacement vectors give the appropriate rigid body rotation
vector when multiplied with G.

Proof that PTPR = 0.

PTPR = PTSG =



−Spin(x̄n)

0
...

−Spin(x̄n)
0


G = 0 , (2.4.42)
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since

Spin(x̄n) = 0 when x̄n =
1
N

N∑
a=0

xn
a = 0 . (2.4.43)

A zero nodal coordinate mean x̄n emerges as a necessary condition for PTPR =
0. Therefore, the element coordinates xn

a must be referred to the element cen-
troid.

Proof that PRPT = 0.

PRPT = SGPT = S [ Ḡt 0 · · · Ḡt 0 ] = 0 , (2.4.44)

since

Ḡt =
1
N

N∑
a=0

Gta = 0 . (2.4.45)

GPT must be zero because each column of PT represents a displacement vector
associated with a rigid translation, which will not generate a rigid body rotation
when premultiplied by G.

2.5 Higher order variations.

The development of the internal force and tangent stiffness in Sections 2.7 and
2.8 requires the variation of the nonlinear projector PT contracted with a force
vector f , where f is to be treated as constant with respect to variations. Similarly,
one needs the variation of the pseudo-vector Jacobian HT

a from equation (2.4.23)
contracted with a moment vector m, where m is not to be varied. These relations
are established here to streamline the derivation of element expressions.

2.5.1 Variation of vector contracted Ha.
The variation of HT

a from equation (2.4.23) contracted with a constant vector
ma can be expressed as

δHTm =
∂HT

∂ωi
m δωi = M δω , (2.5.1)

where the nodal index a has been suppressed to reduce clutter. This relationship
was established by Nour-Omid and Rankin [46] in the form

M = (−1
2
Spin(m) + η ((mTθ)I + θmT − 2mθT ) + ν Spin(θ)2mθT )H (2.5.2)

where η is defined in equation (2.4.25) and

ν =
θ(θ + sin θ) − 8 sin2( 1

2θ)
4θ4 sin2( 1

2θ)
. (2.5.3)
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As in the case of η, for θ → 0, ν → 0/0, wich amplifies computational errors
for small angles. To maintain accuracy ν is computed from a truncated power
series for small values of θ :

ν ≈ 1
360 + 1

7560θ
2 + 1

201600θ
4 for θ < 0.05 radians . (2.5.4)

This series also establishes ν
∣∣
θ→0

= 1
360 .

2.5.2 Variation of vector contracted P.
The variation of the nonlinear projector can be expressed as

δP = δI − δPT − δPR = −δPR = −δSG − S δG . (2.5.5)

In the tangent stiffness expressions one needs the variations of PT contracted
with an element force vector f . This force vector can be decomposed into a
balanced (self equilibrium) force f b and an unbalanced force fu:

f = f b + fu where f b = PT f and fu = (I − PT )f . (2.5.6)

The variation of PT contracted with the force vector can then be expressed as

δPf = −(GT δST + δGTST )(f b + fu)

= −GT δSTPT f − (GT δST + δGTST )fu
= −GT δSTPT f + δPT fu .

(2.5.7)

ST f b = 0 since S simply represents the three rigid body rotations vectors which
does not generate any “work” when multiplied with an equilibrium force vector.
The term δPT fu will in general go towards zero when C0n and Cn are close
because in this case fu goes towards zero.

If G is sufficiently simple one can show that the term δPT fu is identically
zero regardless of the closeness of C0n and Cn. Assume that G can be expressed
as

G = XA, with the variation δG = δXA , (2.5.8)

where X is a coordinate dependent invertible matrix and A is a constant matrix.
The identity in equation (2.4.41) gives the inverse and variation of X as

GS = XAS = I ⇒ X−1 = AS , (2.5.9)

and

δGS + GδS = δXAS + GδS = 0 ⇒ δX = −GδSX . (2.5.10)

24



Using (2.5.9) and (2.5.10) give the variation

δPT fu = −(GT δST + AT δXTST )fu
= −(GT δST − ATXT δSTGTST )fu
= −(GT δST − GT δSTPT

R)fu = −GT δST (I − PT
R)fu

= −GT δST (I − PT
R)(I − PT )f = 0 ,

(2.5.11)

because (I − PT
R)(I − PT )f = PT

T f = 0 if the initial force vector f is in trans-
lational equilibrium. Translational equilibrium at the element level is satisfied
unless the linear stiffness matrix does not represent rigid body translations cor-
rectly, which is unlikely.
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2.6 Governing equations for geometric nonlinear analysis.

The global equilibrium equations of geometric nonlinear discretized by the finite
element method can be compactly stated as the force residual r vanishing along
an equilibrium trajectory:

r(v̂, λ) = f(v̂) − p(λ) = 0 where v̂ = v̂(λ) . (2.6.1)

Here vector (or rather array) v̂ collects the global node displacements of the
structure, as discussed in Section 2.3.4, f is the vector of internal forces induced
by the displacements v̂, and p is the vector of applied external loads written as
a function of a single loading parameter λ. The total displacements of the struc-
ture, collected in v̂, contains both the translations and the rotational orientation
of each node. The rotational orientation can be given in various representations,
examples being the rotation tensor according to the Rodrigues representation,
Euler angles, or Euler parameters. The symbol (ˆ) is used to distinguish the
total displacement state from an incremental displacement vector δv in which
the rotations are the instantaneous rotation axis δω, and a deformational dis-
placement vector vd where the rotations are rotational pseudovectors θd (see
Box 2.1).

Since the force residual is identical zero the first derivative of the equi-
librium equations with respect to the load parameter λ must vanish:

dr
dλ

=
∂f
∂v

dv
dλ

− dp
dλ

= K
dv
dλ

− dp
dλ

= Kw − q = 0 , (2.6.2)

where K is the tangent stiffness matrix, w is the incremental velocity vector and
q is the incremental load vector. Incremental/iterative solution algorithms that
use equation (2.6.1) and (2.6.2) on the global level are described in Chapter 3.
The essential ingredients required in such solution algorithms are the internal
force vector f and the tangent stiffness K. The computation of these quantities
at the element level is dealt with in the following sections.
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2.7 Internal force.
This section covers the computation of element internal forces. The exposi-
tion addresses the most comprehensive form of such computation used in the
present work. This formulation is identified later as Consistent Symmetrizable
Self-Equilibrated (CSSE) formulation since the internal force formulation lead
to a self-equilibrium element internal force vector, which then generates a sym-
metrizable tangent stiffness matrix through its consistent variation. Symmetriz-
able means that although the tangent stiffness is not symmetric, the asymptotic
convergence rate of equilibrium iterations is not impaired when the symmetrized
stiffness is used. From this comprehensive form, simpler consistent formulations
can be obtained through specific simplifying assumptions.

The strain displacement relationship in local coordinate system of the
C0n and Cn configurations is

ε̃ = B̃ṽd , (2.7.1)

where ṽd is the deformational displacement vector from C0n to Cn. Furthermore,
the constitutive relationship in the local coordinate system is

σ̃ = C̃ε̃ . (2.7.2)

The element internal force vector in the global coordinate system can be com-
puted as

f(v̂) = TT P̃
T
H̃

T
∫
V

B̃
T
C̃B̃ dV ṽd = TT P̃

T
H̃

T
K̃eṽd , (2.7.3)

where K̃e can be recognized as the familiar linear theory element stiffness matrix.
In Sections 2.3 and 2.4 one has established the expressions

ṽd = ṽd(v̂) , P̃ = P̃(v̂) , H̃ = H̃(v̂) , (2.7.4)

all being functions of the global displacement state v̂. For an element with N
nodes and six degrees of freedoms per node, that is, three translational degrees
of freedom and three rotational degrees of freedom, the transformation matrix
T in equation (2.7.3) consists of Tn from equation (2.7.5) repeated 2N times
along the diagonal:

T =


Tn 0

. . .
0 Tn


 . (2.7.5)
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Note that T is a function of the global displacement state; T = T(v̂). Further-
more, if the strain displacement matrix B̃ in equations (2.7.1) and (2.7.3) is
expressed with respect to the shadow element C0n one has

B̃ = constant, (2.7.6)

but B̃ = B̃(v̂) if the strain displacement relationship is expressed with respect
to the deformed element geometry Cn. The constitutive matrix C̃ is constant
if the material is linearly elastic. The condition that B̃ be constant, and thus
expressed with respect to the shadow element, is the key condition for an element
independent formulation.

This approach to the computation of the internal force for an element,
with B̃ expressed with respect to C0n, is similar to the procedure of Nour-
Omid and Rankin [46]. If both P and H are set to the identity matrix so that
f = TT K̃eṽd, the internal force expressions used by Bergan et al. [17,42,47] are
recovered.

2.8 Consistent tangent stiffness.

The tangent stiffness K is said to be consistent with the internal forces if it
relates the variation of f with respect to variations in v:

δf =
∂f
∂vi

δvi =
∂f
∂v

δv = K δv . (2.8.1)

Denoting by f̃e = K̃evd, the variation of equation (2.7.3) with respect to v
gives

δf = δTT P̃
T
H̃

T
f̃e + TT δP̃

T
H̃

T
f̃e + TT P̃

T
δH̃

T
f̃e + TT P̃

T
H̃

T
δf̃e

= (KGR + KGP + KGM + KM ) δv = K δv .
(2.8.2)

The contributions of the various terms of (2.8.2) to K are examined in the fol-
lowing subsections, where the following names will be further explained: KM is
called the material stiffness, KGM is the moment-correction geometric stiffness,
KGP is the equilibrium-projection geometric stiffness, and KGR is the rotational
geometric stiffness.
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2.8.1 Material stiffness.
The last term on the right hand side of equation (2.8.2) generates the so-called
material stiffness KM :

TP̃
T
H̃

T
δf̃e = TT P̃

T
H̃

T
δK̃eṽd + TT P̃

T
H̃

T
K̃e δṽd

= TT P̃
T
H̃

T
K̃eH̃P̃ δṽ = TT P̃

T
H̃

T
K̃eH̃P̃T δv = KM δv

(2.8.3)

in which
KM = TT P̃

T
H̃

T
K̃eH̃P̃T (2.8.4)

provided δK̃e = 0. This assumption is only satisfied when B̃ is expressed with
respect to the shadow configuration C0n because if so

δB̃ =
∂B̃
∂ṽi

δṽi = 0 . (2.8.5)

The linear element stiffness matrix K̃e thus stays constant when it is expressed
in the moving co-rotated coordinate system with respect to the shadow element
geometry, and the material is modeled as linearly elastic (hence C̃ is constant).
The validity and effect of expressing B̃ with respect to the C0n configuration is
discussed in Section 2.11.

The deformational displacements ṽd are expressed in co-rotated coordi-
nate system and the relationship

δṽd = H̃P̃δṽ (2.8.6)

established in Section 2.4.7 must express the variation the co-rotated ṽd with
respect to the inertial visible degrees of freedom ṽ.
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2.8.2 Rotational geometric stiffness.

The rotational geometric stiffness appears as the gradient of the force vector
with respect to the rigid rotation of the element. This interpretation is physi-
cally intuitive because a rigid rotation of a stressed element necessarily reorients
the stress vectors by that amount. Consequently the internal element forces
must rigidly rotate to preserve equilibrium. The rotational geometric stiffness
is obtained from the first term on the right hand side of equation (2.8.2) .

δTT P̃H̃
T
f̃e = δTT f̃ =



δTT

n ñ1

δTT
nm̃1

...
δTT

n ñN

δTT
nm̃N


 =




TT
nSpin(δω̃r)ñ1

TT
nSpin(δω̃r)m̃1

...
TT

nSpin(δω̃r)ñN

TT
nSpin(δω̃r)m̃N




= −TT




Spin(ñ1)δω̃r

Spin(m̃1)δω̃r

...
Spin(ñN )δω̃r

Spin(m̃N )δω̃r


 = −TT




Spin(ñ1)
Spin(m̃1)

...
Spin(ñN )
Spin(m̃N )


 δω̃r

= −TT F̃nmδω̃r = −TT F̃nmG̃Tδv .

(2.8.7)

In these derivations the following relations have been used

δTT
n = TT

nSpin(δω̃r) and Spin(δω̃r)ña = −Spin(na)δω̃r . (2.8.8)

The rotational geometric stiffness is thus given by

KGR = −TT F̃nmG̃T , (2.8.9)

where F̃nm =




Spin(ñ1)
Spin(m̃1)

...
Spin(ñN )
Spin(m̃N )


 from f̃ =




ñ1

m̃1
...

nN

m̃N


 = P̃

T
H̃

T
f̃e , (2.8.10)

and P̃ is defined in equation (2.4.34).
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2.8.3 Moment correction geometric stiffness.

The third term in the right hand side of equation (2.8.2) contributes a stiffness
term that arises from the variation the rotation pseudo-vector Jacobian H con-
tracted with the nodal moment vector m. From equation (2.4.33) and using
equation (2.5.1) this term can be written as

TT P̃
T
δH̃

T
f̃e = TT P̃

T




0
δH̃

T

1 m̃1

...
0

δH̃
T

Nm̃N


 = TT P̃

T




0
M̃1δω̃d1

...
0

M̃Nδω̃dN




= TT P̃
T




0
M̃1

. . .
0

M̃N


 δṽd

= TT P̃
T
M̃P̃Tδv .

(2.8.11)

The moment correction geometric stiffness is thus given by

KGM = TT P̃
T
M̃P̃T , (2.8.12)

where

M̃ =




0
M̃1

. . .
0

M̃N


 , (2.8.13)

and M̃a is defined in equation (2.5.1).
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2.8.4 Equilibrium projection geometric stiffness.

The equilibrium projection geometric stiffness arises from the variation of the
projector P̃ with respect to the deformed element geometry. The equilibrium-
projection geometric stiffness expresses the change in the projection of the inter-
nal force vector f̃e as the the element geometry changes. (This can be thought of
as: In the vector space of element force vectors the subspace of self-equilibrium
force vectors changes as the element geometry changes. The projected force vec-
tor thus has a gradient with respect to the changing self-equilibrium subspace,
even though the element force f̃e does not change).

By decomposing the force vector H̃
T
f̃e into balanced f̃ b and unbalanced

f̃u forces according to equation (2.5.6), the second term in the right hand side
of equation (2.8.2) can be transformed as

TT δP̃
T
H̃

T
f̃e = −TT G̃

T
δS̃

T
P̃

T
H̃

T
f̃e + TT δP̃

T
(I − PT )H̃

T
f̃e

= −TT G̃
T
δS̃

T
f̃ b + TT δP̃

T
f̃u .

(2.8.14)

According to the arguments in Section 2.5.2 the term TT δP̃
T
f̃u can be neglected

because this will be small when C0n and Cn are close. Moreover, that term is
identically zero if G̃ is sufficiently simple to be expressed as G̃ = X̃A, where A
is a constant matrix and X̃ is an invertible 3×3 matrix.

This gives the variation as

TT δP̃
T
H̃

T
f̃e = −TT G̃

T
N∑
i=1

[ Spin(δx̃n
i ) 0 ]

[
ñi

m̃i

]

= −TT G̃
T

N∑
i=1

[−Spin(ñi) 0 ]
[
δx̃n

i

δθ̃i

]

= −TT G̃
T

N∑
i=1

[−Spin(ñi) 0 ]
[
δũdi

δθ̃di

]

= −TT G̃
T
F̃
T

n P̃Tδv .

(2.8.15)

The equilibrium projection geometric stiffness is then given by

KGP = −TT G̃
T
F̃
T

n P̃T , (2.8.16)

where F̃n =




Spin(ñ1)
0
...

Spin(ñN )
0


 from f̃ b =




ñ1

m̃1
...

nN

m̃N


 = P̃

T
H̃

T
f̃e , (2.8.17)

and in which P̃ is defined in equation (2.4.34) .
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2.8.5 Additional terms in geometric stiffness.

The term dropped in the transition from equation (2.8.14) to (2.8.15) can be
computed as

TT δP̃
T
f̃u = −(G̃

T
δS̃

T
+ δG̃

T
S̃
T
)f̃u

= (KA1 + KA2)δv .
(2.8.18)

By following the derivations in equation (2.8.15) the first term of (2.8.18) is
obtained as

KA1 = −TT G̃
T
F̃n

T

u P̃T, (2.8.19)

where F̃nu is based on the unbalanced forces f̃u = (I − P̃
T
)f̃e. Define the

unbalanced resultant moment acting on the element as

m̃u = S̃
T
f̃u , (2.8.20)

through which the second term in (2.8.18) can be written as

KA2δv = −TT δG̃m̃u = −TT ∂G̃
∂v

m̃u δṽ

= −TT ∂G̃
∂ṽ

m̃uT δv .

(2.8.21)

These terms have not been implemented in the present work based on the ar-
gument in Section 2.5.2 that they are usually small. However, in the case of
quadrilateral shell elements subjected to significant warping those terms may be
necessary to maintain quadratic convergence of a true Newton nonlinear solution
algorithm.

2.8.6 Summary of consistent tangent stiffness.

Combining equations (2.8.2) , (2.8.4) , (2.8.12) , (2.8.9) and (2.8.19) the
following expressions for the consistent tangent stiffness results:

K = TT (K̃M + K̃GM + K̃GR + K̃GP )T

= TT (P̃
T
H̃

T
K̃eH̃P̃ + P̃

T
M̃P̃ − F̃nmG̃ − G̃

T
F̃
T

n P̃)T ,
(2.8.22)

where
P̃ = I − P̃T − P̃R ,
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and

F̃mn =




Spin(ñ1)
Spin(m1)

...
Spin(ñN )
Spin(mN )


 , F̃n =




Spin(ñ1)
0
...

Spin(ñN )
0


 from f̃ =




ñ1

m̃1
...

nN

m̃N


 = P̃

T
H̃

T
f̃e .

(2.8.23)

2.8.7 Properties of the stiffness matrix.

The tangent stiffness matrix in (2.8.22) has some properties that may be ex-
ploited to verify the computer implementation. By post and premultiplying with
S from equation (2.4.36) one obtains the following identities.

Postmultiplying with S.

KS = PTHTKeHPS + PTMPS − FnmGS − GTFT
nPS

= −Fnm .
(2.8.24)

In the equation above one has used GS = I from equation (2.4.41) , and the
relationship

PS = IS − PTS − SGS

= S − 0 − S = 0 .
(2.8.25)

Premultiplying with ST .

STK = STPTHTKeHP + STPTMP − STFnmG − STGTFT
nP

= −STFnmG − FT
nP = −STFnm − FT

n + FT
nPT + FT

nSG

= −FT
n + (FT

nS − STFnm)G

= −FT
n ,

(2.8.26)

since

(FT
nS − STFnm) =

n∑
a=1

(Spin(na)Spin(xa) − Spin(xa)Spin(na) − Spin(ma))

=
n∑

a=1

Spin(na × xa − ma) = 0.
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Equation (2.8.24) and (2.8.26) can be summarized as

KS = −Fnm ,

STK = −FT
n ,

or

KMS = 0
KGRS = −Fnm

KGPS = 0
STKM = 0

ST (KGR + KGP ) = −FT
n .

(2.8.27)

Matrix S is easy to form based on the nodal coordinates of an element. From
the output of the internal force computations one can easily form Fnm and Fn.
The matrix products in (2.8.27) with K as the output of the stiffness routine
can be checked against Fnm and Fn as output of the internal force routine. This
procedure tests the programming of the projector matrix P because it checks the
null-space of P. It also indicates whether the projector matrix is used correctly
in the stiffness formulation. However, the expressions in (2.8.27) do not entail a
complete verification of consistency between the internal force and the tangent
stiffness because H is left unchecked. Full verification of consistency can be
numerically done through finite difference techniques.

2.9 Three consistent co-rotated formulations.
The previous formulation of the internal force and tangent stiffness can produce
three co-rotated consistent formulations that satisfy self-equilibrium and sym-
metry to varying degree. Sections 2.7 and 2.8 present the most comprehensive
one, called the Consistent Symmetrizable Self-Equilibrated (CSSE) co-rotated
formulation. The following subsections describe the three versions in the order
of increasing complexity.

2.9.1 Consistent co-rotated formulation (C).

The internal force is computed as in the co-rotated formulation of Bergan et al.
[47,42,17]. This is obtained from equation (2.7.3) by setting H = I and P = I.
The expression for the tangent stiffness in (2.8.2) simplifies with δP = 0 and
δH = 0, while retaining δṽd = P̃

T
H̃

T
δṽ:

f = TT K̃eṽd ,

K = TT (K̃eH̃P̃ − F̃mnG̃)T ,
(2.9.1)

where F̃nm is computed according to equation (2.8.23) using f̃ = K̃eṽd. The
internal force is in equilibrium with respect to the shadow element configuration
C0n. The material stiffness approaches symmetry as the element mesh is refined
if the membrane strains are “small”. With mesh refinement the deformational
rotation pseudo-vectors θ̃ad gets smaller and approach vector properties that
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make H approach the identity matrix. With small membrane strains K̃e is
indifferent with respect to postmultipliplication with P̃ because the C0n and
Cn configurations will be close: K̃eP → K̃e. The consistent geometric stiffness
is always unsymmetric, even at equilibrium. Because of this fact one can not
expect quadratic convergence for this formulation unless a non-symmetric solver
is used.

This formulation is not satisfactory for quadrilateral shell elements since
the C0n and Cn reference can be far apart. Only in the limit of a highly re-
fined element mesh will the C0n and Cn references in general be close, and a
satisfactory equilibrium ensured.

2.9.2 Consistent Self-Equilibrated co-rotated formulation (CSE).

The internal force is equilibrated through pre-multiplication by the projector
matrix PT . On the other hand, matrix H is set to the identity matrix in the
force expression and consequently the stiffness is simplified with δH = 0:

f = TT P̃
T
K̃eṽd ,

K = TT (P̃
T
K̃eH̃P̃ − F̃mnG̃ − G̃

T
F̃
T

n P̃)T ,
(2.9.2)

where F̃nm and F̃n are computed according to equation (2.8.23) using f̃ =
P̃

T
K̃eṽd.

Due to the symmetric precence of P̃, the material stiffness of this for-
mulation approaches symmetry as the mesh is refined regardless of the strain
magnitude. The geometric stiffness at the element level is non-symmetric, but
the assembled global geometric stiffness will become symmetric as global equi-
librium is approached, provided that there are no applied nodal moments and
the displacement boundary conditions are conserving. A symmetrized tangent
stiffness maintains quadratic convergence for refined element meshes with this
formulation. (Convergence rates are discussed in Section 3.5.)
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2.9.3 Consistent Symmetrizable Self-Equilibrated co-rotated for-
mulation (CSSE).

The internal force is coerced into self-equilibrium by pre-multiplying with PT

and the material stiffness part of the tangent stiffness is rendered symmetric by
premultiplying the internal force with HT :

f = TT P̃
T
H̃

T
K̃eṽd ,

K = TT (P̃
T
H̃

T
K̃eH̃P̃ + P̃

T
M̃P̃ − F̃mnG̃ − G̃

T
F̃
T

n P̃)T ,
(2.9.3)

where F̃nm and F̃n are computed according to equation (2.8.23) using f̃ =
P̃

T
H̃

T
K̃eṽd. The assembled global geometric stiffness for this formulation is

symmetric as in the CSE case, and since the material stiffness is always symmet-
ric one can expect quadratic convergence with a symmetrized tangent stiffness
without the refined mesh limit of the CSE formulation. However, the restriction
of no applied nodal moments and conserving boundary conditions still applies
for the assembled global geometric stiffness to become symmetric at equilibrium.
This is further discussed in Section 3.5.2.

2.10 Remarks on the co-rotated formulations.
This section discusses and critiques different nonlinear formulations based on the
co-rotated formulation. The most common way of deriving the finite element
equations in conservative problems is based on the stationary value of a discrete
functional. If such a functional exists we have a variational principle. The second
variation of the functional provides the incremental equation with a symmetric
tangent stiffness matrix.

In a consistent co-rotated formulation the tangent stiffness is not gen-
erally symmetric. Consequently, the finite element discretization cannot be de-
rived from a functional. This is largely due to the fact that the formulation
contains rotational degrees of freedom referred to a moving reference system,
which are non-integrable. The finite rigid body motions are only obtained on
an element average form, not in a continuous sense. This makes the strain mea-
sure used closely linked to the discretization of a problem since the extraction
of the rigid body motions needs an element mesh in order to be defined. A
(possible) variational principle for this formulation is inextricably linked to the
presence of a finite element mesh. In the absence of a functional, the starting
point for the co-rotational formulation is the force equilibrium equations, which
in a functional-based formulation appear at the first variation level.
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2.10.1 Requirement for the nonlinear formulations.

It is convenient to set forward a set of requirements for geometrically nonlinear
analysis with respect to which different co-rotated formulations can be evaluated.
The requirements are listed below in order of increasing importance:

1. Equilibrium.

2. Consistency.

3. Invariance.

4. Symmetrizability.

5. Element independence.

Equilibrium: The continuum solution of a static structural problem requires
that every particle be in equilibrium. On the other hand, in the finite element
solution of the problem one requires that each discrete finite element be in
equilibrium, while at the same time the global nodes are in equilibrium. From
an equilibrium point of view the only difference between linear and geometrically
nonlinear analysis is the choice of equilibrium configuration. The linear finite
element method requires that the elements be in equilibrium with respect to
their initial configuration C0. The geometrically nonlinear formulation requires
that elements be in equilibrium with respect to the deformed configuration Cn.
By the equilibrium requirement is thus meant to what extent the finite element
internal force vector f is in self-equilibrium with respect to the deformed element
geometry Cn. As discussed in Chapter 3, this is a fundamental requirement for
tracing the correct equilibrium path that satisfies the vanishing of the force
residual

f(v̂) − p(λ) = 0 . (2.10.1)

Consistency: a formulation is called consistent if the tangent stiffness is the
gradient of the internal forces with respect to the degrees of freedom:

K ≡ ∂f
∂v

. (2.10.2)

This requirement determines the convergence rate of an incremental/iterative
solution algorithm. An inconsistent tangent stiffness may give poor conver-
gence, but does not alter the equilibrium path since this is entirely prescribed
by the equilibrium requirement. A poor tangent stiffness may cause the solution
algorithm to fail completely, but most often if a solution path is found, however
slowly, the solution path is the correct one. However, lack of consistency may
affect the location of bifurcation (buckling) points and the branch switching
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mechanism for post-buckling analysis. In other words, an inconsistent tangent
stiffness matrix may locate (see) a bifurcation where equilibrium is not satisfied
from the residual equation. Subsequent branch-switching will then be difficult
because the corrector iterations need to “jump” to the secondary path as “seen”
by the residual equation.

Invariance: this term is used to describe whether different element orientations
give different results. For example, does a local element-node reordering give
an altered equilibrium path or change the convergence characteristics for the
analysis for an otherwise identical mesh?

The main contributor to a lack of invariance is the way the deforma-
tional displacement vector vd is extracted from the total displacements, which
also affects the variation of the deformational displacements with respect to the
visible degrees of freedom v;

vd = vd(v̂) and δvd =
∂vd

∂v
δv = HPδv . (2.10.3)

In the expression for the variation of the deformational displacement vector the
matrix G, which links the variation of the rigid body rotation to that of the
visible degrees of freedom, gives the best indication of a lack of invariance.

Symmetrizability: this term means that a symmetrized tangent stiffness can be
used without loss of convergence rate even when the consistent tangent away
from equilibrium is not symmetric. In the examples studied here this require-
ment was met when the material stiffness of the formulation was rendered sym-
metric. This is further described in Section 3.5.2.

Element independence: this term means that the formulation is unique for all
elements with the same node and degrees of freedom configuration. For example:
does the internal force and consistent stiffness expressions incorporate all three
node shell elements with six degrees of freedoms per node?

The co-rotated formulation of Bergan et al and Rankin et al. are now
reviewed with respect to these criteria.
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2.10.2 The co-rotated formulation of Bergan et al.

The internal force is computed as in the C formulation in Section 2.9.1:

f = TT f̃e = TT K̃eṽd , (2.10.4)

where K̃e is computed relative to the C0n reference. The internal force vector
is thus in equilibrium with respect to the shadow element geometry C0n, but
not with respect to the deformed element geometry Cn. This approximation
appears to be acceptable if the strains remain small and simplex elements such
as two-node beams and three-node shell elements are used, because if so the
C0n and Cn configurations are guaranteed to remain close. As a refinement
the work of Levold [40], who developed a co-rotated three node shell element
utilizing Green-Lagrange strains that satisfied equilibrium with respect to the
true deformed state Cn, should be cited.

The procedure for extracting the deformational displacement vector ṽd

from the total displacements satisfies the invariance criterion.
A consistent tangent stiffness for this formulation can be computed as

described in Section 2.9.1, but the tangent stiffness used in Refs. [17,42,47] is
usually computed as

K = TT (K̃e + K̃G)T , (2.10.5)

where the geometric stiffness K̃G is based on application of the principle of
virtual work to membrane stresses and simplified or actual bending shape func-
tions. This tangent stiffness is not necessarily consistent with the internal force
expression of equation (2.10.4).

Bjærum [17] optimized the geometric stiffness K̃G for linearized buck-
ling analysis by using the displacement shape functions of the linear element as
basis for forming the geometric stiffness. This gives very good results for lin-
earized buckling analysis because high interpolation order of the buckling mode
over the element is obtained. Sections 4.5 and 5.5 indicate that the geometric
interpolation shape functions control the the rigid rotation of the element, and
determine its geometric stiffness. Tuning the geometric stiffness generally results
in loss of consistency.
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2.10.3 The co-rotated formulation of Rankin et al.
The internal force is computed as

f = TT P̃ ¯̃fe , (2.10.6)

where ¯̃fe = H̃
T
K̃eṽd and K̃e is computed relative to the C0 reference. The

deformational displacements vd are extracted in a similar fashion to Bergan
et al., although without using the concept of a shadow element. The tangent
stiffness is computed as

K = TT ( ¯̃KM + K̃GR + K̃GP )T

= TT (P̃
T
K̃eP̃ − F̃nmG̃ − G̃

T
F̃
T

n P̃)T ,
(2.10.7)

where
¯̃KM = P̃

T
K̃eP̃ + P̃

T
M̃P̃ (2.10.8)

and
P̃ = I − P̃R , (2.10.9)

F̃nm =




Spin(ñ1)
Spin(m1)

...
Spin(ñN )
Spin(mN )


 , F̃n =




Spin(ñ1)
0
...

Spin(ñN )
0


 from f̃ =




ñ1

m̃1
...

nN

m̃N


 = P̃

T ¯̃fe .

(2.10.10)
A difference between Rankin’s formulation and the present one is that Rankin’s
projector lacks the PT term and thus does not filter the rigid body translations,
as can be seen by comparing equations (2.4.34) and (2.10.9). The present
formulation is thus more rigorous with respect to the variation of the defor-
mational displacement vector as δṽd = H̃P̃Tδv. However this difference does
not affect the computations unless a linear element that is not in translational
balance is used. In Rankins’s formulation, the terms concerning the variation of
the rotational pseudovector gradients are classified as material stiffness terms.
These are called geometric stiffness terms in the current formulation since they
vanish for a zero internal force or stress state.

More importantly, the expressions for filtering the deformational dis-
placements ṽd from the total displacements in Rankin’s formulation is not el-
ement orientation invariant. This is further discussed in the element sections
where the G matrices for different formulations are developed.
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2.10.4 Summary of co-rotated formulations.

A summary of the co-rotated formulations considered in this work is given in
Table 2.1. The table contains the formulations of Bergan et al. [17,47,42] and
Nour-Omid and Rankin [46,53] as well as the formulations developed in the
present work and summarized in Section 2.9.

Table 2.1. Summary of co-rotated formulations.

Formulation S.Equil. Consist. Invar. Symm. Elem.ind.

Bergan et al.
√

Rankin et al.
√ √ √ √

C
√ √ √

CSE
√ √ √ √

CSSE
√ √ √ √ √

The column labels in Table 2.1 denote the following. “S.Equil.” indi-
cates whether the element is in self equilibrium with respect to the deformed
element configuration Cn. “Consist.” means that the tangent stiffness is the
v-gradient of the element internal force. “Invar.” is checked if the formulations
is insensitive to choice of node numbering. “Symm.” is checked if the formula-
tions maintain quadratic convergence of a true Newton solution algorithm with
a symmetrized tangent stiffness matrix. “Elem.ind.” indicates whether the tan-
gent stiffness expressions are element independent in the sense that it is common
for all elements with the same node and degree-of-freedom configuration.

2.11 Evaluation of the formulation with respect to element
types.

The current formulation is element independent since it does not contain any
gradient of any intrinsically element dependent quantities such as the strain
displacement relationship. This treatment is sufficient for elements where the
restriction to small strains automatically implies that the shadow element and
the deformed element configurations are close. In particular this holds for low
order simplex elements such as two-node beam and three-node shell elements.

The main practical reason for limiting element independence to low-
order elements is the softening effect of the nonlinear projector P. The use of
P to restore the correct rigid body motions, and hence equilibrium with respect
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Figure 2.4. Positioning of shadow element for 2 and 3 node beam
elements for snap-thru of an arch.

to the deformed element geometry, effectively reduces the eigenvalues of the
material stiffness relative to the shadow element material stiffness Ke. This
softening effect becomes significant if the C0n and Cn geometries are far apart.

Such softening effect can be noticeable for four-node initially-warped
shell elements. Assume that the element is initially warped with “positive”
warping. The element material stiffness of this initial positive warping is then
K+ = PT

+KeP+ = Ke. Give the element displacements that switch this warping
to the opposite of the initial one; that is, a “negative” warping. The new element
material stiffness then becomes K− = PT

−KeP− �= Ke One will intuitively want
the two element configurations to have the same “stiffness” in the sense of the
dominant nonzero eigenvalues of the tangent stiffness matrix. But it can be
shown that the eigenvalues of the projected material stiffness matrix K− can be
significantly lower than those of the initial stiffness matrix K+. If the element
stiffness Ke is referred to the flat element projection, one will restore symmetry
of K+ and K− with respect to dominant nonzero eigenvalues, but not remove
the softening effect.

This argument also carries over to higher order elements that are curved
in the initial reference configuration. This is illustrated in the arch snap-through
problem in Figure 2.4, which is modeled by two and tree node beam elements.
The three-node beam element undergoes a significant softening effect from the
projector P because the shadow element C0n can not be closely fit to the de-
formed element Cn, even in the absence of large strains. The two-node beam
element does not suffer from this limitation.
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Chapter 3

Nonlinear Solution Algorithms.
Before the mid-1970s, geometrically nonlinear structural problems were usually
treated with purely incremental methods under load control. These methods
have the disadvantage of causing computed solutions to drift away from the
equilibrium path. This drift error is step-size dependent and often accumulates
during the analysis, thus requiring a very fine step-size for accurate analysis.
This accumulated drift error can only be practically assessed by re-running the
problem with different step-sizes. Furthermore, traversal of critical points is
difficult or even impossible if one enforces load control, as discussed below.

These shortcomings motivated the development of incremental/ iterative
methods where the increment was followed by equilibrium-correcting iterations
that brings the solution back to the equilibrium path. Introduction of a corrector
has the advantage that the drift error is eliminated and thus, as long as the
iterative phase converges, the computed equilibrium path is independent of the
increment step-size.

Geometrically non-linear structures usually reach a maximum load level.
At that state the structure is unable to withstand further load increases until
a significant change in geometry occurs. Such states are called critical points,
and are generally characterized by a singular tangent stiffness matrix. Critical
points may be classified into limit and bifurcation points. If the tangent stiffness
is singular, but the equilibrium path is still smooth with a tangent component
along the gradient of the incremental load, the critical point is a limit point. If
the stable path after the limit point has an abrupt change in tangent direction,
and that direction does not have a component along the incremental load, the
critical point is called a bifurcation point.

A load control strategy may be able to detect a limit point but cannot
generally traverse it. Traversal is often desirable to assess whether the structure
has residual load carrying capabilities after what might be a localized instability.
A number of methods of traversing the equilibrium path beyond limit points have
been described in the literature. One can mention the method of artificial springs
[56,67], methods based on controlling the load increment with the “current
stiffness parameter” and suppressing iterations around limit points [13] and the
displacement control techniques first introduced by Argyris [2].

During the past 20 years important improvements have been made by
allowing loads and displacements to be simultaneously varied in each incremental
step. The most practically important instances of these strategies are the hyper
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plane displacement control developed by Simons, Bergan and Nyg̊ard [59] and
the arc-length methods originally proposed by Riks [54] and Wempner [65] and
later refined by Bathe et al. [5,6], Batoz and Dhatt [8], Crisfield [20], Ramm
[51] and Riks [55]. Unfortunately, none of these algorithms are best for all
problems. However, the arc-length type algorithms are generally considered as
the most versatile algorithms in terms of the range of problems they can solve.
An arc-length type algorithm has been adopted for the present work. Two
corrector strategies have been compared: the normal plane corrector of Riks
and Wempner, and the orthogonal-trajectory corrector proposed by Fried [31].

3.1 Governing equations for response tracing.

The global equilibrium equations of geometric nonlinear problems can be stated
as the force residual r being zero:

r(v̂, λ) = f(v̂) − p(λ) = 0 where v̂ = v̂(λ) . (3.1.1)

where f are the deformation-resisting internal forces, v̂ is the displacement state
of the structure and p is the external load on the structure written as a function
of a single loading parameter λ.

Since the force residual is identical zero the first derivative of equation
(3.1.1) with respect to the load parameter λ must also vanish when evaluated
at the equilibrium path:

dr
dλ

=
∂f
∂v

dv
dλ

+
dp
dλ

= K
dv
dλ

+
dp
dλ

= Kw − q = 0 . (3.1.2)

Here K = ∂f/∂v is the tangent stiffness matrix introduced in Chapter 2, q =
dp/dλ is the incremental load vector, and w = dv/dλ is the incremental velocity
vector. Equation (3.1.2) is the differential equation of the equilibrium path. To
trace this path numerically by an incremental method, (3.1.2) is integrated
with a finite step-size:

∆r = K∆v − q∆λ = ∆λ(Kw − q) = 0 . (3.1.3)

A unit tangent vector along the equilibrium path can be defined as

t̄ =
1
f

{
w
1

}
where f =

√
1 + wTw . (3.1.4)

This is illustrated in Figure 3.1. The superposed bar (¯) is used to indicate a
vector in the load-displacement space (v, λ).
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Figure 3.1. Tangent vector along an equilibrium path.

3.2 Arc-length type response tracing algorithms.

The following section develops a generalized arc-length algorithm. The algo-
rithm is sought to be discretization independent in the sense that a mesh refine-
ment or load scaling will not change the incremental step-sizes. The generalized
arc-length algorithm includes load control and displacement control as special
cases.

3.2.1 Updating the global displacement state.

The global finite displacement state for a finite element model of a structure
is defined by the translational displacements and rotational orientations of all
the nodes. For a node a one thus needs to update the translational displace-
ments vector va and the rotational orientation represented by the rotation tensor
Ra. The rotation tensor Ra can be defined by Euler angles, Euler parameters,
Rodrigues parameters or the Cayley representation. If one is not particularly
concerned about memory usage for a finite element code, the tensor representa-
tion works well. It requires storage of a matrix of nine elements instead of, for
instance, four Euler parameters, three pseudo-vector components, or three Euler
angles. The work of Nyg̊ard [47], Mathisen [42] and Bjærum [17] has typically
utilized the tensor representation of the rotational orientation, and this is the
form chosen here.

The global displacement state can be thought of as a “vector” or array
v̂ consisting of the nodal displacement vectors va and rotation tensors Ra for
all the nodes of the finite element model (see Box 2.1). From the response
tracing algorithms one computes a global incremental displacement vector ∆v
that contains incremental translations vectors ∆va and incremental rotations
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vectors ∆ωa for each node a. The update of the global displacement state can
be written as

v̂ := v̂ ⊕ ∆v . (3.2.1)

The symbol := takes the meaning of a programmers equal sign; one computes
the right hand side and assigns the value to the left hand side. The symbol ⊕
has the meaning of a plus sign for the translational degrees of freedom where the
incremental translation is added to the total displacements. For the rotational
degrees of freedom ⊕ means that the nodal rotation vector is “added” to the
rotation tensor as

Ra := R(∆ωa)Ra . (3.2.2)

This updating procedure symbolized by equation (3.2.1) is described in further
detail in Box 3.1.

Box 3.1. Updating the global displacement state.

The expression v̂ := v̂ ⊕ ∆v (3.2.3)
is computed as:

foreach node a do
Extract ∆va and ∆ωa from ∆v
Form R(∆ωa) from equation (2.3.17)
Update va := va + ∆va

Update Ra := R(∆ωa)Ra

enddo

3.2.2 Conventional arc length algorithm.

The equilibrium path is a curve in the N + 1 dimensional space spanned by the
loading parameter λ and the N degrees of freedom vector v. An incremental
displacement vector ∆v with matching load increment ∆λ can be written as the
augmented displacement vector ∆v̄:

∆v̄ =
{

∆v
∆λ

}
, (3.2.4)

where prefix ∆ is used for the incremental step (or predictor step) of the arc
length algorithm. For the equilibrium iterations the increment in the augmented
space is written

δv̄ =
{
δv
δλ

}
, (3.2.5)
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Figure 3.2. Predictor and corrector step for the normal
plane method.

where prefix δ denotes corrector changes. The resulting arc length algorithm is
illustrated in Box 3.2. The following sections describe the predictor step and
corrector iterations in further detail.

Predictor step.
Advancing from a converged solution (λ, v̂) gives the incremental load solution
wq0 from solving K(v̂)wq0 = q(λ). The incremental displacement step is set to

∆v̄ = ∆λw̄q0 = ∆λ
{

wq0

1

}
. (3.2.6)

By requiring the step in the load-displacement space to have a prescribed length
∆s the vector length definition

∆s =
√

∆v̄T∆v̄ (3.2.7)

gives

∆λ = ± ∆s√
1 + wT

q0wq0

. (3.2.8)

The sign for ∆λ can be determined by assuming that the equilibrium path is
smooth, and that in an “advancing” solution process the present predictor step
must form a positive vector product with the previous predictor step.
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Normal plane iterations.
The normal plane method was developed by Riks [54,55] and Wempner [65] and
is often referred to as the Riks-Wempner method. Here the name “normal plane
iterations” is adopted due to its more descriptive character.

The corrector steps should reach back to the equilibrium path as quickly
as possible. Because the predictor step direction w̄q0 is a good approximation of
the tangent direction of the equilibrium path, in the absence of further informa-
tion one may assume that the shortest distance to the equilibrium path lies in
a direction orthogonal to the predictor step, as depicted in Figure 3.2. Because
the normal plane to the predictor step is a hyperplane, subsequent corrector it-
eration are forced to lie on that surface. This is the rationale behind the normal
plane iteration method. The iteration displacement vector can be written as

δv̄ =
{
δv
δλ

}
. (3.2.9)

Note that the symbol δ is here used to denote a corrector iteration increment,
whereas ∆ is used for a predictor step increment, see (3.2.8) .

To force δv̄ onto the normal plane, it is decomposed into two contribu-
tions, one due to the residual solution w and the ohter due to the incremental
load solution wq from K(v̂)wr = r(v̂, λ) and K(v̂)wq = q(λ) respectively. The
combined solution is

δv̄ = w̄r + δλw̄q =
{

wr

0

}
+ δλ

{
wq

1

}
. (3.2.10)

Scaling the load increment δλ so that δv̄ stays in the normal-plane gives

δλ = −
wT

q0wr

(1 + wT
q0wq)

, (3.2.11)

which satisfies the constraint w̄T
q0δv̄ = 0.
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Figure 3.3. Corrector iterations for the orthogonal trajectory method.
Dotted line illustrates that normal plane iterations may
miss a sharp turn of the equilibrium path.

Orthogonal trajectory iterations.
The orthogonal trajectory iteration method was developed by Fried [31] as a
way of inducing convergence to an equilibrium state from an arbitrary starting
configuration. In the present work the method is use in the correction phase of
an incremental/iterative solution process.

One requires the combined iterations increment of equation (3.2.10) to
be orthogonal to the incremental flow at a current (non-equilibrium) configura-
tion, as illustrated in Figure 3.3. This orthogonality condition gives the scaling
of the load increment as

δλ = −
wT

q wr

(1 + wT
q wq)

, (3.2.12)

from w̄T
q δv̄ = 0. Note the similarities between equation (3.2.11) and (3.2.12).

Figure 3.3 also depicts the hyperplane of the normal plane iterations, which
in the illustrated case “miss” the equilibrium path. The present numerical ex-
periments have shown that the orthogonal trajectory iteration method is more
robust then the normal plane iteration method. More specifically, in most of
the nonlinear problems presented in Chapter 8 it allowed predictor stepsizes of
up to 5 times those permitted by the normal plane corrector.
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Box 3.2. Arc-length type algorithm.

Predictor step with arc length ∆s:

Solve K(v̂)wq0 = q with respect to wq0

Set f =
√

1 + wT
q0wq0 (3.2.13)

If wT
q0v0 > 1 ∆λ =

∆s
f

else ∆λ = −∆s
f

Set v0 = ∆λwq0

Update λ := λ+ ∆λ and v̂ := v̂ ⊕ ∆λwq

Corrector iterations:
Do k = 1, . . .

Solve K(v̂)wq = q for wq

and K(v̂)wr = −r(v̂, λ) for wr

Solve δλ from (3.2.11), (3.2.12) or (3.2.22)

Update λ := λ+ δλ and v̂ := v̂ ⊕ (wr + δλwq)

until ‖r(v̂, λ)‖ < ε
where ε is a pre-selected convergence criterion.

3.2.3 Discretization independent arc-length definition.

The main parameters controlling a path following algorithm are the step size ∆s
and the convergence criterion ε. Although it is impossible to make the optimal
values of these parameters problem independent, one should strive to make them
as insensitive to the actual discretization as possible. In particular:

– A mesh refinement should not influence the actual displacement size that
matches a prescribed arc-length ∆s. Nor should a mesh refinement make
a convergence criterion ε more strict or relaxed with respect to the actual
corrector iterations.

– A scaling of the actual applied loads (in order to get the target λ at a
desired value) should not change the actual step-size of the path following
algorithm.

To make the arc-length algorithm as discretization independent as possible one
needs to change the definition of the arc-length and the convergence criterion of
the traditional arc-length method.
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Traditionally, the arc-length ∆s is defined in the load-parameter and
displacement vector space (λ,v) as

∆s =
√

∆λ2 + vTv = ∆λ
√

1 + wTw . (3.2.14)

The key difficulty with this definition is the mismatch of physical quantities:
∆λ and v have different physical dimensions, thus (3.2.14) adds apples and
oranges. Equation (3.2.14) gives the increment in the load-parameter ∆λ, the
displacement increment ∆v and the force increment ∆p as

∆λ =
∆s√

1 + wTw
, ∆v = ∆λw and ∆p = ∆λq . (3.2.15)

Unfortunately this arc-length definition gives a load increment ∆p = ∆λq that
is dependent on the definition of q, since the incremental loading parameter
∆λ is independent of the incremental load q. A scaling of the incremental load
as qb = bq0 will give proportional increment in the step size of the predictor
step since the actual load increment has been scaled, even though the loading
parameter increment and prescribed arc length are unchanged. This is not
desirable. One wants a path-following algorithm where the step-size and optimal
algorithm parameters depend only on the physical characteristics of the problem,
rather than modeling of the problem.

A better choice for the load increment is ∆λ̄ = ∆λ lq, where lq is the
norm of the incremental load q. This definition of the loading parameter gives an
actual load increment ∆p that is independent of the scaling of the incremental
load q. Furthermore, if q changes in response to a change in the number of
elements, as happens in mesh refinement or mesh adaptation, lq still reflects the
resultant force.

The norm of the incremental displacements as given by
√

wTw does not
give a good measure of the physical incremental displacements of a structure.
This quantity typically grows as the mesh is refined even if the structural dis-
placement remain the same. The norm of the incremental displacements should
thus be scaled with 1

n where n denotes the number of nodes in the element mesh.
This suggests the following discretization “independent” arc-length def-

inition

∆s =

√
∆λ̄2 +

1
n
vTv = ∆λ

√
l2q +

1
n
wTw , (3.2.16)

which gives for the corresponding load increment ∆λ:

∆λ =
∆s√

l2q + 1
nwTw

and ∆p = ∆λq . (3.2.17)
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3.2.4 Convergence criterion for corrector iterations.

The convergence criterion for the corrector phase is of importance for several
reasons. If the convergence threshold is too strict computational time is wasted.
If the threshold is overly lenient the solution process may not give sufficient
accuracy, or even induce divergence because of large equilibrium drifts. The
convergence of the corrector iterations is usually monitored through the Eu-
clidean norm of the residual r, in which case the acceptance test is

√
rT r =

√√√√ n∑
i=1

r2i < εr , (3.2.18)

or the Euclidean norm of the displacement correction:

√
δvT δv =

√√√√ n∑
i=1

δr2i < nεv . (3.2.19)

Note that the convergence criterion for the incremental displacements is multi-
plied by the number of nodes n in order to make it approximately mesh inde-
pendent.

Another popular convergence check relies on the “residual energy” test
used by Stanley [61] and Mathisen [42]

δvT r =
n∑

i=1

δviri < εe . (3.2.20)

This convergence criterion has the advantage that it adopts consistent unit of
energy for both rotational and translational degrees of freedom. It also repre-
sents a balancing act between the residual norm and the displacement norm. For
instance in the vicinity of critical points the residual can be almost zero whereas
the incremental displacements are still fairly large because of the near-singularity
of the tangent stiffness.
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3.2.5 Generalized normal-plane algorithm.

Scaling the loading parameter λ with a user defined factor fλ and the dis-
placements in an entry by entry fashion with the vector fv gives a generalized
arc-length definition which includes the load control, displacement control and
state control strategies as special cases.

The modeling independent generalized arc-length algorithm is obtained
from Box 3.2 by substituting the predictor step in equation (3.2.13) with

f =

√
fλl2q +

1
n
wT

fq0wfq0 , (3.2.21)

where wfq0 = fv ∗wq0 is defined in equation (3.2.23) below. The corrector
iteration is given by

δλ = −
1
nwT

fq0wfr

(fλl2q + 1
nwT

fq0wfq)
. (3.2.22)

The symbol ∗ denotes an entry by entry multiplication of two vectors:

wfq = fv∗wq =




f1wq1

...
fiwqi

...
fnwqn



. (3.2.23)

Through particular choices for the load scaling fλ and displacement
scaling fv several special control strategies can be recovered.

Load control: Setting fλ = 1/l2q and fv = 0 gives the load control algorithm:

∆λ = ∆s and δλ = 0 . (3.2.24)

Displacement control: By setting fλ = 0, fi =
√
n at degree of freedom i and

fj = 0 for all degrees of freedom j �= i, one obtains the displacement control
through the i-th degree of freedom:

∆λ =
∆s
wqi

and δλ =
wq0iwri

wq0iwqi

. (3.2.25)

State control: Setting fλ = 0 and f =
√
nI gives state control where the the

Euclidian norm of the incremental displacements is constrained to be ∆s:

∆λ =
∆s√

wT
q0wq0

and δλ =
wT

q0wr

wq0wq
. (3.2.26)
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3.3 Linearized buckling analysis.

The generalized eigenvalue problem arising from a linearized buckling analysis
can be expressed as

(K0 + λφKG)φ = 0 , (3.3.1)

where K0 is the initial stiffness of the structure and KG is the rate of change of
the stiffness with respect to the loading parameter λ as

KG =
dK
dλ

∣∣∣
v̂=0̂

. (3.3.2)

The critical load of the structure is then given by the eigenvalue λφ closest to
zero with the associated buckling mode given by the eigenvector φ.

3.3.1 Linearizing about the initial state.

The linearized buckling analysis predicts the critical buckling load with respect
to the initial geometry of the structure. The tangent stiffness for a structure
is in general given as a function of the present displacement state v̂ as K(v̂)
rather than as a function of the load level directly. This has to be considered
when computing the stiffnesses K0 and KG in equation (3.3.1) . One uses K0

as the initial stiffness for the structure:

K0 = K(0̂) . (3.3.3)

The gradient of the tangent stiffness should be computed according to the initial
geometry of the structure with the element internal force computed according
to linear theory. This is difficult with a nonlinear analysis code. Instead the
rate of change of the stiffness is based on the secant formula applied between
(λ = 0, v̂ = 0̂) and a small load increment and its associated converged solution
(λ∆, v̂∆) as

KG =
1
λ∆

(K(v̂∆) − K(0̂)) . (3.3.4)

This secant stiffness will usually deviate slightly from the true tangent stiffness
at λ = 0. In order to minimize this effect one will usually ensure that λ∆ is
small compared to the computed critical load λcr by doing an a posteriori check
of the ratio between λ∆ and λcr: for instance λ∆ < 0.01λcr.
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3.3.2 Generalized linearization.
As an extension of the foregoing technique, equation (3.3.1) can be solved using
two points on the equilibrium path to define the initial and secant stiffness. If
the two points are given by the load level λ and converged solutions v̂ as (λ1, v̂1)
and (λ2, v̂2) this linearization gives

K0 = K(v̂1) ,

KG =
1

(λ2 − λ1)
(K(v̂2) − K(v̂1)) .

(3.3.5)

The critical load is then
λcr = λ1 + λφ , (3.3.6)

with the associated buckling mode given by the eigenvector φ.

3.3.3 Solving the eigenvalue problem.

One is usually only interested in either the lowest, or a few of the lowest eigenval-
ues and associated eigenvectors when solving the eigenvalue problem in equation
(3.3.1). Computing all the eigenvalues and eigenvectors would be computation-
ally costly and not add knowledge because the higher eigenvalues and eigenvec-
tors have no physical meaning in terms of the actual structure. Most eigenvalue
solvers return the highest, or a set of the highest, eigenvalues and eigenvectors
rather than the full set of eigenvalues and eigenvectors. In order to utilize these
methods one has to rewrite the problem as

(KG + ξK0)φ = 0 where ξ =
1
λφ

. (3.3.7)

Solving this will return the highest ξ which corresponds to the lowest λφ. If this
technique is used, care must be taken since K0 is in general positive definite
whereas KG is not.

56



Box 3.3. Inverse power-iterations for the buckling eigen-
problem.

Pick random φ1

Do k = 1, . . .

Multiply y = KGφk

Solve K̄0φ
k+1 = y with respect to φk+1

Scale φk+1 =
1
ξ
φk+1 where |ξ| = ‖φk+1‖∞

until |φk+1
i − φki | < ε for every i = 1, . . . , n

where ε is a pre-selected convergence criterion.

Solving the eigenvalue problem using inverse power-iterations.
If φ is an eigenvector of the above problem, φ will also be an eigenvector of the
shifted eigenvalue problem

(K̄0 + λ̄KG)φ = 0 , (3.3.8)

where
λ̄ = (λ− µ) and K̄0 = (K0 + µKG) . (3.3.9)

The inverse power-iteration algorithm applied to this shifted eigenvalue problem
is summarized in Box 3.3.

The best approximation eigenvalue of the original eigenvalue problem in
equation (3.3.1) can then be retrieved as the Rayleigh quotient:

λ = − φTK0φ

φTKGφ
where φ = φk+1 , (3.3.10)

By using the initial shift µ = 0 the algorithm can be made to converge
to the lowest eigenvalue and associated eigenvector. A shift can also be per-
formed after a certain number of iterations in order to speed up convergence
of the algorithm. If one has a good initial guess of the location of a particular
eigenvalue, the algorithm can be targeted to find the eigenvalue and eigenvector
closest to this guess by performing the shift µ = λguess initially.

3.4 Handling of critical points.

Successfully dealing with a bifurcation point when traversing an equilibrium
path can be split into two sub-problems: detecting the bifurcation point and
switching to the secondary path.
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3.4.1 Detecting a bifurcation point.

Using the factorization K = LDLT when solving for the displacement incre-
ments when traversing the equilibrium path gives a simple way to check for
critical points. It is known that the number of negative elements in the diagonal
matrix D is equal to number of negative eigenvalues of K. By monitoring the
number of negative diagonal elements one can detect that a critical point has
been passed if the number of negative diagonal-elements has changed since the
last converged solution. If the previous converged solution is (λ1, v̂1) and the
current converged solution is (λ2, v̂2), there will exist a point (λφ, v̂φ) on the
equilibrium path where where the tangent stiffness has a null-eigenvector φ as

K(v̂φ)φ = 0 and φTK(v̂φ) = 0T . (3.4.1)

Finding the exact position of the critical point (λφ,vφ) is often difficult, because
the tangent stiffness becomes ill conditioned as the critical point is approached.
An approximation of the eigenvalue λφ and the buckling mode φ can be ob-
tained by solving the secant-linearized eigenvalue problem between (λ1, v̂1) and
(λ2, v̂2), as described in Section 3.3.2:

(K0 + ∆λKG)φ = 0 ,

where
K0 = K(v̂1), KG =

1
(λ2 − λ1)

(K(v̂2) − K(v̂1)) , (3.4.2)

with respect to the eigenvector φ and ∆λ. The critical load is given by

λφ = λ1 + ∆λ . (3.4.3)

Following detection one must determine whether the critical point is a limit point
or a bifurcation point. By pre-multiplying equation (3.1.2) with φT and using
equation (3.4.1) one gets

φTq∆λ = 0 . (3.4.4)

This relation can be satisfied in two ways. If φTq �= 0 we must have ∆λ = 0,
which signals a limit point. On the other hand, if φTq = 0 ∆λ can be arbitrary
and we have a bifurcation point.

φTq = 0 : Bifurcation point

φTq �= 0 : Limit point
(3.4.5)
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Numerically, φTq is not likely to be exactly zero. In order to better
judge the numerical value of the product it is recommended to use the normalized
vectors φ and q for the vector-product, and compare to a small value

φTq
‖φ‖‖q‖ < ε , (3.4.6)

where ε is in the order of 10−3. The left side of equation (3.4.6) can be recognized
as the cosine of the angle between the vectors φ and q. In general ε should be
a solver input since a large step-size will usually give less accurate prediction of
the eigenvector and thus higher value for cos(φ,q).

If one has determined the critical point to be a limit point, no branch
switching is necessary. The arc-length algorithm will continue along the primary
path automatically. In the case of the critical point being a bifurcation point
additional operations are needed to effect the so-called “branch-switching”, in
which one arrives at the bifurcation point along one branch and exits along
another branch.

It should be noted that checking whether the critical point is a bifur-
cation point by computing the eigenvector φ and checking orthogonality with
respect to the incremental load q is time consuming. When the critical point is
a limit point neither the eigenvalue λφ or the eigenvector φ is needed in order to
continue to traverse along the equilibrium path. Bjærum [17] lists several condi-
tions where the critical point can be flagged as a limit point without computing
λφ or φ. These conditions are based on sign changes in the current stiffness
parameter [13] and the last load increment. These methods are time saving,
but not fully robust. An example where this strategy fails is when a bifurcation
point and a limit point are close together and both lie within the bracket of the
two last solutions.

3.4.2 A simple branch switching procedure.

Suppose that a bifurcation point has been detected between two converged so-
lutions (λ1, v̂1) and (λ2, v̂2), with estimated eigenvalue λφ and eigenvector φ.
A branch switching to the secondary path can then be performed by doing
a predictor-step from (λ1, v̂1) to an estimated point on the secondary path
(λφ, v̂1 ⊕ ∆v) by setting

∆v =
(λφ − λ1)
(λ2 − λ1)

vs + f
‖vs‖
‖φ‖ φ . (3.4.7)

The factor f is used to scale the step onto the secondary path. f = 1 gives a
step along the secondary path equal to the length of the secant vector vs.

59



Care has to be taken so that the corrector iterations do not converge
back to the primary path. This “switchback” can be avoided by using the
normal plane iterations and ensuring that the augmented normal plane vector
v̄n is perpendicular to the augmented secant vector v̄s. When using the normal
vector as a linear combination of the eigenvector and the secant vector

v̄n = φ̄ + βv̄s =
{

φ
0

}
+ β

{
vs

∆λs

}
=

{
vn

∆λn

}
, (3.4.8)

the orthogonality condition v̄T
s v̄n = 0 gives

β = − vT
s φ

∆λ2
s + vT

s vs
. (3.4.9)

Setting the corrector increment equal to a linear combination of the
residual solution v̄r and the the incremental load solution v̄q as

δv̄ = w̄r + v̄q =
{

wr

0

}
+ δλ

{
wq

1

}
, (3.4.10)

the normal plane orthogonality condition v̄T
n δv̄ = 0 gives

δλ = − vT
nwr

∆λn + vT
nwq

. (3.4.11)

Note that equation (3.4.11) allows ∆λn to be zero (which is often the case)
whereas equation (3.2.11) can not handle this unless wq0 is an infinity vector.

This procedure is attractive due to its simplicity, and appears to be suf-
ficient for symmetric bifurcation. For more complex bifurcation points a branch
switching algorithm that utilizes the higher order derivatives of the equilibrium
path is probably necessary. With non-symmetric bifurcation one also needs a
criterion for picking the branch direction with the lowest energy. This is can be
done by doing a trial step in each direction and comparing the energy of each
direction, but is not rigorously possible unless an energy functional exists. This
procedure has not been implemented in the present investigation.

3.5 Convergence of response tracing algorithms.

The convergence rate of the corrector phase of a true-Newton nonlinear solution
algorithm can indicate whether the tangent stiffness matrix is consistent. This
rate can also quantify what is lost when a symmetrized tangent stiffness is used
rather than a consistent nonsymmetric stiffness. True Newton correctors are
known to have ultimate quadratic convergence if consistency with the residual
is enforced.
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3.5.1 Convergence rate.

Suppose that quantity v gets computed as a sequence of approximants vn. The
error of the approximant as a function of the iteration count n is then εn = vn−v.
The series of solutions vn is said to converge to v at rate p if

εn = C εpn−1 as εn → 0 , (3.5.1)

where C is a bounded constant. If p = 1 and C ∈ 〈0, 1〉 one is has linear
convergence. (p = 1 and C > 1 gives divergence since the error is increasing).
Linear convergence adds significant digits at a constant rate with respect to n. If
p > 1 the convergence is said to be superlinear. This adds number of significant
digits at an increasing rate as the iterations progress. Quadratic convergence is
given by p = 2 and the number of significant digits will asymptotically double
at each iteration. Due to their asymptotic nature these convergence rates are
measured and obtained as one gets near the solution.

Two value convergence rate indicators.
Assuming one has the error ε at step n and n − 1 the convergence rate can be
evaluated by computing

Cn =
εn
εn−1

from εn = Cn εn−1 . (3.5.2)

Linear convergence can be diagnosed as Cn remains approximately constant as
the exact solution is approached (eventually round off will mask this effect). If
Cn decreases one has superlinear convergence.

Similarly, if one computes

Cn =
εn
ε2n−1

from εn = C ε2n−1 . (3.5.3)

and finds that cn is increasing with n one has sub-quadratic convergence.
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A three value convergence rate estimator.
The concept behind Richardson’s extrapolation [18] can be used to

obtain an estimate of the convergence rate based on three consecutive error
values εn, εn−1 and εn−2. Assume that the convergence rate is given by the two
equations

εn = C εpn−1 and εn−1 = C εpn−2 . (3.5.4)

By taking the natural log of each side of the equations and subtracting the
second equation from the first one obtains

p =
ln εn − ln εn−1

ln εn−1 − ln εn−2
=

ln( εn

εn−1
)

ln( εn−1
εn−2

)
. (3.5.5)

This estimator can be used from iteration n = 3 and on to give an estimate of
the convergence rate of an algorithm.

The Euclidian norm of the force residual r is used to assess the conver-
gence rate of the present formulations and algorithms:

er = ‖r‖ =
√

rT r . (3.5.6)

The “exact” value of this norm is zero when the solution process has converged.
This gives the norm of the residual as an error measure directly. The convergence
rate p has been determined from equation (3.5.5) , and based on the asymptotic
value of p one classifies:

Linear convergence : p ∈ [1.0, 1.1〉
Superlinear convergence : p ∈ [1.1, 1.8]

Quadratic convergence : p > 1.8

(3.5.7)
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3.5.2 Expected convergence rates.

Quadratic convergence of a true Newton corrector can be expected the global
tangent stiffness matrix is consistent. Furthermore, the use of a symmetrized
tangent stiffness will still give quadratic convergence if the nonsymmetric stiff-
ness is vanishing at the same rate as the residual, as stated in the following
theorem proven by Nour-Omid and Rankin [46]:

Theorem. Ignoring the antisymmetric part of the tangent matrix when solving

the linearized system in a Newton-Raphson type algorithm results in a quadratic

rate of convergence if

‖KA
i ‖ ≤ α‖r(v̂i)‖ , (3.5.8)

where α is a constant.

Here i is the iteration count, KA is the anti-symmetric part of the tangent
stiffness matrix and r is the force residual.

For this theorem to apply, the displacement boundary conditions must
be such that they are derivable from a functional, that is, the boundary con-
ditions must be conservative. This applies to the applied load as well, since
nonconservative forces gives nonsymmetric load-displacement tangent stiffness
matrix [42].
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Chapter 4

Triangular Shell Elements.
An important advantage of the co-rotational formulation is the “reuse” of ex-
isting linear finite elements for large-rotation small-strain analysis. Chapters 4
and 5 develop high-performance shell elements that can efficiently provide the
internal forces fe and linear stiffness Ke used in the co-rotational nonlinear anal-
ysis presented in Chapters 2 and 3. The term “high performance” collectively
identifies elements that can provide engineering accuracy with fairly coarse dis-
cretization.

Chapter 4 develops a triangular shell element whereas Chapter 5 devel-
ops a 4-node quadrilateral shell element. Both elements include drilling degrees
of freedom as part of their membrane components.

In the exposition below, the special identifiers used in the previous chap-
ters to distinguish linear and nonlinear components are dropped for clarity since
the most of the development deals with the formulation of linear elements. Thus
Ke, for example, is written simply as K.

4.1 Element stiffness by the ANDES formulation.

Let K denote the linear element stiffness matrix, v the visible element degrees of
freedoms and f the corresponding element forces. The element stiffness equations
for the elements developed below can be written as

Kv = (Kb + Kh)v = f . (4.1.1)

Here Kb and Kh are called basic and higher-order stiffness matrices respectively.
This decomposition of the element stiffness equations also applies to the quadri-
lateral shell element constructed in the next chapter.

Kb is formulation independent in that it is entirely defined by an as-
sumed constant stress together with an assumed boundary displacement field.
This approach to forming the basic stiffness was first developed by Bergan and
Hanssen [11] and later integrated in the the more developed form of the Free
Formulation (FF) by Bergan and Nyg̊ard [14,47].

Kh can be formed using several different formulations, most notably
the FF, the Extended Free Formulation (EFF) [1] and the Assumed Natural
Deviatoric Strains (ANDES) formulation. The latter grew out of work done by
Felippa to incorporate FF into a variational framework [25,26], combined with
further developments by Militello and Felippa [44,45].
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4.1.1 Basic stiffness construction.
The procedure for constructing the basic stiffness can be found in several sources.
Militello has a very enlightening description in his Ph.D thesis [45]. This step
by step outline of the basic stiffness construction is also described in Reference
[1], and is outlined below here for easy reference.

B1. Assume a constant stress state, σ̄ inside the element. This gives the asso-
ciated boundary tractions σ̄n:

σ̄n = σ̄·n = Tnσ̄ , (4.1.2)

where n is the outward unit normal vector on the element boundary and Tn

is a transformation matrix that substitutes the tensor-product σ̄ni = σ̄ijnj
with an equivalent matrix-multiply.

B2. Connect a boundary displacement field, d, to the visible degrees of freedom,
v as

d = Ndv . (4.1.3)

Matrix Nd contains boundary displacement functions that must satisfy
inter-element continuity, and exactly include rigid body and constant strains
motion. Note, however, that the internal displacement field need not be de-
fined here at this point; and in fact in the ANDES formulation such field is
not explicitly constructed.

B3. Construct the force-lumping matrix, L, that consistently “lumps” the
boundary tractions σ̄n to element node forces that are conjugate to the
visible degrees of freedom v in the virtual work sense:∫

S

δdT σ̄ndS =
∫
S

δvTNT
d Tnσ̄dS = δvT

∫
S

NT
dndS σ̄ = δvTLσ̄ = δvT f̄ .

(4.1.4)
This equation provides the lumping matrix L as

L =
∫
S

NT
d TndS =

∫
S

NT
dndS . (4.1.5)

B4. The basic stiffness is constructed as

Kb =
1
V

LCLT , (4.1.6)

where C is the stress-strain constitutive matrix, and V is the volume of a
three-dimensional element. (V is replaced by area and length measures for
two-dimensional and one-dimensional elements, respectively.)
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4.1.2 Higher order stiffness by the ANDES formulation.

Militello gives a thorough description of the ANDES formulation in his Ph.D
thesis [45] . This includes a point by point description of the construction of
the higher order stiffness. This is also described by Felippa and Militello in [27]
. The essence of this development outlined below is the use of assumed strain
distribution, rather than displacement modes, to characterize the higher-order
behavior of the element.

H1. Select locations in the element where “natural straingage” locations are to
be chosen. For many ANDES elements these gages are placed on reference
lines but this is not a general rule. By appropriate interpolation, express
the element natural strains ε in terms of the “straingage readings” at those
locations:

ε = Aεg , (4.1.7)

where ε is a strain field in natural coordinates that must include all constant
strain states. (For structural elements the term “strain” is to be interpreted
in a generalized sense, for example curvatures for beams or plate bending
elements.)

H2. Relate the Cartesian strains e to the natural strains:

e = Tε = TAεg = Ag (4.1.8)

at each point in the element. (If e ≡ ε, or if it is possible to work throughout
in natural coordinates, this step is skipped. This is often the case if T is
constant over the element as for the triangular shell elements developed
here.)

H3. Relate the natural straingage readings g to the visible degrees of freedom

g = Qv , (4.1.9)

where Q is a straingage-to-node displacement transformation matrix. Tech-
niques for doing this vary from element to element and it is difficult to state
rules that apply to every situation. Often this step is amenable to break-
down into subproblems; for example

g = Q1v1 + Q2v2 + . . . (4.1.10)

where v1, v2, . . . are conveniently selected subsets of v. Some of these
components may be derivable from displacements while others are not.
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H4. Split the Cartesian strain field into mean (volume-averaged) and deviatoric
strains:

e = ē + ed = (Ā + Ad)g , (4.1.11)

where Ā = 1
V

∫
V

TAεdV , and ed = Adg has mean zero value over V . For
elements with simple element geometry this decomposition can often be
done in advance, and ed constructed directly. Furthermore, this step may
also be carried out on the natural strains if T is constant.

H5. The higher order stiffness matrix is given by

Kh = βQTKdQ , with Kd =
∫
V

AT
d CAd dV , (4.1.12)

where β > 0 is a scaling coefficient. It is often convenient to combine the
product of A and Q into a single strain-displacement matrix called (as
usual) B, which splits into B̄ and Bd:

e = AQ = (Ā + Ad)Qv = (B̄ + Bd)v = Bv , (4.1.13)

in which case
Kh = β

∫
V

BT
d CBd dV . (4.1.14)

We next apply these rules to the construction of a three-node trian-
gular shell element. Because the element is flat, the membrane and bending
can be developed separately. Both developments, however, share the geometric
information presented in the following subsection.

4.2 Geometric definitions for a triangular element.

The geometry of a three-node triangular element is graphically defined in Figure
4.1.

By defining li to be length of side edge opposite to node i and hi as
height from node i to side i according to Figure 4.1 one obtains

li =
√
x2
jk + y2

jk and hi =
2A
li
, (4.2.1)

where A is the triangle area, which may be calculated as

2A = x21y31 − x31y21 = x31y12 − x12y32 = x13y23 − x23y13 . (4.2.2)
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Figure 4.1. Geometric dimensions and unit vector definitions
for a triangular element.

The unit vector si along side i and the outward normal vector ni at
side i can then be defined as

si =



six
siy
0


 =

1
li



xkj
ykj
0


 and ni =



nix
niy
0


 =




−siy
six
0


 . (4.2.3)

4.3 The triangular membrane element.

The construction of an ANDES triangular membrane element is described by
Felippa and Militello in [27]. The present description is adapted to the notation
used for the four-node quadrilateral element in Chapter 5.

The nodal degrees of freedom vi for the membrane element consists of
the in-plane translations u, v and the “drilling” degree of freedom θz :

vi =



ui
vi
θzi


 . (4.3.1)
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4.3.1 Basic stiffness.
The lumping of the constant membrane stresses to a node j is only a function
of the neighboring side edges ij and jk. The total lumping matrix can thus be
divided into the contributions to the separate nodes as

L =


L1

L2

L3


 , (4.3.2)

where

Lj =
1
2


 yki 0 −xki

0 −xki yki
α
6 (y2

ij − y2
kj)

α
6 (x2

ij − x2
kj)

α
3 (xkjykj − xijyij)


 , (4.3.3)

and the nodal indices (i, j, k) take cyclic permutations of (1, 2, 3). The basic
stiffness is then computed as

Kb =
t

A
LCLT , (4.3.4)

where t is the element thickness and A the element area.

4.3.2 Higher order stiffness.

Felippa and Millitello [27] extracted the higher order behavior of the element
by defining the higher order degrees of freedom θ̃i as the nodal drilling degrees
of freedom minus the rigid body and constant strain rotation θ0 of the CST
element

θ̃i = θi − θ0 , (4.3.5)

where

θ0 =
1

4A
[−x32 −y32 0 −x13 −y13 0 −x21 −y21 0 ]v . (4.3.6)

By further splitting the hierarchical rotations into mean θ̄ = (θ̃1 + θ̃2 + θ̃3)/3
and deviatoric components θ′i = θ̃i − θ̄ one gets



θ′1
θ′2
θ′3
θ̄


 =




0 0 2
3 0 0 − 1

3 0 0 − 1
3

0 0 − 1
3 0 0 2

3 0 0 − 1
3

0 0 − 1
3 0 0 − 1

3 0 0 2
3

x32
4A

y32
4A

1
3

x13
4A

y13
4A

1
3

x21
4A

y21
4A

1
3







vx1

vy1
θ1
vx2

vy2
θ2
vx3

vy3
θ3




, (4.3.7)
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which in matrix form reads
θh = Hθvv . (4.3.8)

The pure-bending field.
The pure bending field is connected to the deviatoric hierarchical rotations θ′i as

εb1 =



εb21|1
εb32|1
εb13|1


 =


 ρ1χ21|1 −ρ2χ21|1 ρ4χ21|1

ρ5χ32|1 ρ3χ32|1 −ρ3χ32|1
−ρ1χ13|1 ρ4χ13|1 ρ2χ13|1






θ′1
θ′2
θ′3


 = Qb1θ

′

εb2 =



εb21|2
εb32|2
εb13|2


 =


 ρ2χ21|2 −ρ1χ21|2 ρ4χ21|2

ρ4χ32|2 ρ1χ32|2 −ρ2χ32|2
−ρ3χ13|2 ρ5χ13|2 ρ3χ13|2






θ′1
θ′2
θ′3


 = Qb2θ

′

εb1 =



εb21|3
εb32|3
εb13|3


 =


 ρ3χ21|3 −ρ3χ21|3 ρ5χ21|3

ρ4χ32|3 ρ2χ32|3 −ρ1χ32|3
−ρ2χ13|3 ρ4χ13|3 ρ1χ13|3






θ′1
θ′2
θ′3


 = Qb3θ

′ (4.3.9)

where
χij|k =

4A
3l2ij

and χij|i = χij|j = − 2A
3l2ij

(4.3.10)

and the ρi are numerical coefficients to be chosen. Coefficients ρi that optimize
in-plane bending behavior of rectangular mesh units are found to be [28]

ρ2 = 1 , ρ3 =
1
2

and ρ1 = ρ4 = ρ5 = 0 . (4.3.11)

Having defined the matrices Qbi in (4.3.9), the bending strains over the
element can now be interpolated linearly between the nodes:

εb = (ζ1Qb1 + ζ2Qb2 + ζ2Qb2)θ
′ = Bbθ

′ . (4.3.12)

The torsional field.
The torsional field is connected to the mean deviatoric rotation θ̄ and is given
in [27] as

εt =



εt21
εt32
εt13


 = 3



χ21|1ζ21
χ32|2ζ21
χ13|3ζ21


 θ̄ = Btθ̄ .
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The total strain field.
The total natural coordinate strain field is the combination of the pure-

bending and torsional strain fields expressed with respect to the visible degrees
of freedom

ε = εb + εt

= Bbθ
′ + Btθ̄

= [Bb Bt ]θh

= [Bb Bt ]Hθvv

= Bv .

(4.3.13)

The stiffness matrix.
The higher order stiffness matrix is computed as

Kh =
∫
A

BTCεB dA where Cε = TTCT , (4.3.14)

and

T−1 =


 s122

x s12
2
y s12xs12y

s23
2
x s23

2
y s23xs23y

s31
2
x s31

2
y s31xs31y


 . (4.3.15)

Matrix T transforms the natural coordinate strains to Cartesian strains, while
T−1 does the opposite.

4.4 The triangular bending elements.

The bending component of the triangular shell element is based on the linear
three node plate bending element AQR developed by Militello [45]. A higher
order stiffness is also developed by sanitizing the BCIZ element [9]. Two basic
stiffnesses exist, one based on linear interpolation of normal rotations along a
side edge and one based on quadratic variation of the normal rotation. The
triangular ANDES bending elements can thus be formed by combining several
basic and higher order stiffnesses.

The nodal bending degrees of freedom vi consists of the out of plane
translation w and the in-plane rotations θx and θy

vi =



wi

θxi
θxi


 . (4.4.1)
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4.4.1 Basic stiffnesses.
Kb is one of the basic stiffness matrices described by Militello in [45] as

Kb =
1
A

LlCLT
l or Kb =

1
A

LqCLT
q ,

where

Ll =


Ll1

Ll2

Ll3


 and Lq =


Lq1

Lq2
Lq3


 .

Lqi and Lqi are described in equation (5.3.4) and (5.3.5) respectively. The
nodal indices (i, j, k) in the equations above takes the cyclic permutations of
(1, 2, 3) as in the case of the membrane lumping.

4.4.2 BCIZ higher order stiffness.

The BCIZ element developed by Bazeley et al. [9] is an historically important
nonconforming element. However, the element is known not to pass the Patch
Test. In fact the puzzling behavior of the element motivated the original devel-
opment of that test. The use of the BCIZ element as an higher order stiffness
for a triangular Free Formulation plate bending element was developed by Fe-
lippa, Haugen and Militello [29]. The transverse displacement field of the BCIZ
element was given explicitly by Felippa [24] as

w =




ζ21 (3 − 2ζ1) + 2ζ1ζ2ζ3
−ζ21 (y12ζ2 + y13ζ3) − 1

2 (y12 + y13)ζ1ζ2ζ3
ζ21 (x12ζ2 + x13ζ3) + 1

2 (x12 + x13)ζ1ζ2ζ3
ζ22 (3 − 2ζ2) + 2ζ1ζ2ζ3

−ζ22 (y23ζ3 + y21ζ1) − 1
2 (y23 + y21)ζ1ζ2ζ3

ζ22 (x23ζ3 + x21ζ1) + 1
2 (x23 + x21)ζ1ζ2ζ3

ζ23 (3 − 2ζ3) + 2ζ1ζ2ζ3
−ζ23 (y31ζ1 + y32ζ2) − 1

2 (y31 + y32)ζ1ζ2ζ3
ζ23 (x31ζ1 + x32ζ2) + 1

2 (x31 + x32)ζ1ζ2ζ3




T

v

The strain displacement matrix Bχ giving the natural curvatures from the visible
degrees of freedom is obtained by double differentiation of the displacement field
with respect to the triangular coordinates and appropriate relations detailed in
the Appendix of [29]:

χ =



χ12

χ23

χ31


 = Bχv = (Bχ0 + Bχ1ζ1 + Bχ2ζ2 + Bχ3ζ3)v ,
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where

BT
χ0 =




6 0 6
0 0 0
0 0 0
6 6 0
0 0 0
0 0 0
0 6 6
0 0 0
0 0 0



, BT

χ1 =




−12 −4 −12
4y12 y12 + y13 4y13

−4x12 −x12 − x13 −4x13

0 −4 0
−2y21 −y21 + y23 0

2x21 x21 − x23 0
0 −4 0
0 −y31 + y32 −2y31
0 x31 − x32 2x31



,

BT
χ2 =




0 0 −4
−2y12 0 −y12 + y13

2x12 0 x12 − x13

−12 −12 −4
4y21 4y23 y21 + y23

−4x21 −4x23 −x21 − x23

0 0 −4
0 −2y32 y31 − y32
0 2x32 −x31 + x32



,

and

BT
χ3 =




−4 0 0
y12 − y13 0 −2y13

−x12 + x13 0 2x13

−4 0 0
y21 − y23 −2y23 0

−x21 + x23 2x23 0
−4 −12 −12

y31 + y32 4y32 4y31
−x31 − x32 −4x32 −4x31



.

By using a natural curvature constitutive matrix Cχ = TTCT the
higher order stiffness matrix becomes

Kh =
∫
A

BT
χdCχBχd dA,

where Bχd
= Bχ − B̄χ and B̄χ = Bχ0 + 1

3 (Bχ1 + Bχ2 + Bχ3).
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4.4.3 ANDES higher order stiffness by direct curvature readings.

The three node ANDES element is based on direct curvature interpolation of the
natural curvatures. As reference lines Millitello [45] chose the three side edges,
which function as Hermitian beams. The nodal strain gage readings expressed
as function of the visible degrees of freedom can be written

g = Qv = QF ∗Fv , (4.4.2)

where

gT = [κ31|1 κ12|1 κ12|2 κ23|2 κ23|3 κ31|3 ] ,

vT = [ vz1 θx1 θy1 vz2 θx2 θy2 vz3 θx3 θy3 ] ,
(4.4.3)

QF =




−6 4 4 0 0 0 6 2 2
−6 −4 −4 6 −2 −2 0 0 0

6 2 2 −6 4 4 0 0 0
0 0 0 −6 −4 −4 6 −2 −2

0 0 0 6 2 2 −6 4 4
6 −2 −2 0 0 0 −6 −4 −4




(4.4.4)

and

F =




F31 F31 F31

F12 F12 F12

F12 F12 F12

F23 F23 F23

F23 F23 F23

F31 F31 F31




where

F12 =
[ 1
l212

n12x

l12

n12y

l12

]
F23 =

[ 1
l223

n23x

l23

n23y

l23

]
F31 =

[ 1
l231

n31x

l31

n31y

l31

] . (4.4.5)

The six curvature gage readings in g give two curvature gage readings
at each node. But three natural coordinate curvature readings are necessary to
transform to the Cartesian strains at each node. A third reading is obtained by
invoking the following projection rule [45]: the natural curvature κij is assumed
to vary linearly along side ij and constant along lines normal to side ij. Node
k is then assigned a κij value according to the projection of the node on line ij.
This assumption can be expressed as the matrix relationship

κ = Aκg , (4.4.6)
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where
Aκ = (4.4.7)

 0 ζ1 + λ12ζ3 ζ1 + λ21ζ3 0 0 0
0 0 0 ζ2 + λ23ζ1 ζ2 + λ32ζ1 0

ζ1 + λ13ζ2 0 0 0 0 ζ3 + λ31ζ2




and

λij =
−sTkisij lki

lij
.

The deviatoric parts of the strains are now obtained by subtracting the
mean strain:

Aκd = Aκ −
∫
A

Aκ dA ,

which gives
Aκd = (4.4.8)

 0 ζ̃1 + λ12ζ̃3 ζ̃1 + λ21ζ̃3 0 0 0
0 0 0 ζ̃2 + λ23ζ̃1 ζ̃2 + λ32ζ̃1 0

ζ̃1 + λ13ζ̃2 0 0 0 0 ζ̃3 + λ31ζ̃2




in which ζ̃i = ζi − 1
3 .

The deviatoric cartesian curvatures.
The deviatoric cartesian strain distribution over the element can now be ex-
pressed as

κd = Tκ = TAκdg = TAκdQv = Bdv ,

where T is defined in equation (4.3.15).

The higher order stiffness.
Finally, the higher order stiffness can be computed from the deviatoric strains
as

Kh =
∫
A

BT
d CBd dA . (4.4.9)
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4.5 Nonlinear extensions for a triangular shell element.

The linear triangular shell element is now ready to be incorporated in the co-
rotational formulation discussed in Chapter 2. The shadow element C0n is best
fit to the deformed element Cn by a rigid body motion of the undeformed initial
element C0. However this “best fit” is not unique. The rotation gradient matrix
G defined in equation (2.4.12) can be split into contributions from each node
as

δω̃r = G̃ δṽ where G̃ = [ G̃1 G̃2 G̃3 ] =


 G̃θx

G̃θy

G̃θz


 , (4.5.1)

and δṽ is defined as

δṽ =



δṽ1

δṽ2

δṽ3


 where δṽi =

{
δũi

δω̃i

}
. (4.5.2)

Three techniques for fitting the shadow element are discussed below. Each
technique produces different G̃i submatrices.

4.5.1 Aligning a triangle side.

This procedure is similar to Rankin’s alignment of the C0n and Cn elements [46]
in that it uses a common side edge direction for those configurations. Whereas
Rankin picks side 13 for the unit-vector e2 and node 1 as the origin of the
coordinate system, the current approach aligns the directions of side 12 with
the e1 axis and uses the element nodal average (triangle centroid) as the origin
of the coordinate system. This choice of centroid as origin is necessary in order
to satisfy the orthogonality of PT and P in equation (2.4.43) .

Through consistent variation of the foregoing choice of local coordinate
system, the nodal submatrices G̃i of equation (4.5.1) is obtained as

G̃1 =
1

2A


 0 0 x32 0 0 0

0 0 y32 0 0 0
0 − 2A

l12
0 0 0 0


 ,

G̃2 =
1

2A


 0 0 x13 0 0 0

0 0 y13 0 0 0
0 2A

l12
0 0 0 0


 ,

G̃3 =
1

2A


 0 0 x32 0 0 0

0 0 y32 0 0 0
0 0 0 0 0 0


 ,

(4.5.3)

where A is the area of the triangle and l12 is length of side 12. (This variation
is carried out in more detail for the four node shell element i Section 5.5.)
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Figure 4.2. Definition of side edge angular errors.

The in-plane rotations can be recognized as ωx = ∂w
∂y and ωy = −∂w

∂x , using
the geometric shape functions to interpolate w. This choice of shadow element
fit satisfies the required splitting of the rotation gradient matrix as G̃ = X̃A
where only matrix X is coordinate dependent as required for the consistency
condition in equation (2.5.8) . On the other hand, this choice does not give
an invariant deformational displacement vector for the element in the sense
discussed in Section 2.10.1.

4.5.2 Least square fit of side edge angular errors.

Nyg̊ard [47] and Bjærum [17] place the C0n element in the plane of the de-
formed element Cn with node 1 coinciding. The present study utilizes coinciding
centroids. The in-plane orientation of the shadow element is then determined
by a least square fit of the side edge angular errors. According to Figure 4.2 the
squared-error sum is

e2 = α2
1 + α2

2 + α2
3 . (4.5.4)

By rotating the shadow element an angle β the square of the errors becomes

e2(β) = (α1 + β)2 + (α2 + β)2 + (α3 + β)2 . (4.5.5)

Minimizing with respect to β:

∂e2(β)
∂β

= 0 ⇒ β = −1
3
(α1 + α2 + α3) . (4.5.6)

Consequently, the optimal in-plane position of the shadow element according
to this algorithm is given by the mean of the side edge angular errors. This
condition yields for the nodal submatrices
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Figure 4.3. Patch of triangle elements subjected to pure stretching.

G̃i =
1

2A


 0 0 xkj 0 0 0

0 0 ykj 0 0 0
2A
3 (− sjy

lj
+ sky

lk
) 2A

3 ( sjx

lj
− skx

lk
) 0 0 0 0


 . (4.5.7)

The major advantage of this method is that it gives a unique fit indepen-
dent of node numbering, which leads to a invariant deformational displacement
vector as discussed in section 2.10.1. The rotational gradient matrix cannot be
split into a coordinate dependent and independent part in order to be consistent
with equation (2.5.8). However, again, this is of minor importance for triangular
elements since the shadow element C0n and the deformed element Cn will be
close together for small membrane strains.

A more serious disadvantage of this fitting method is that it reintroduces
the problem of fictitious normal rotations when an element is subjected to pure
stretch.

This difficulty is illustrated in Figure 4.3, where the C0n elements rotate
due to the in-plane rotation of the diagonal. The deformational displacement
vector is then computed as the difference between Cn and C0n. A deformational
normal rotation is thus picked up since the predictor step gives no rotation at
the nodes and the deformational rotation is the total rotation minus the rigid
body rotation

θd = (θ − β) = −β . (4.5.8)

This problem is similar to that pointed out by Irons and Ahmad [39] when
defining drilling degrees of freedom as the mean of the side edge rotations at an
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node. This was overcome by Bergan and Felippa [15] when they defined the
normal rotation as θz = 1

2 ( ∂v∂x − ∂u
∂y ) for the linear FF membrane element. It

is seen that the problem of fictitious normal rotations has been thus been re-
introduced for the nonlinear case by the choice of shadow element positioning.
This problem is even more pronounced with the side edge alignment procedure
described in Section 4.5.1.

4.5.3 Fit according to CST-rotation.

As with the least square fit of side edge angular errors the shadow C0n element is
chosen to be co-planar with the deformed element Cn, and the centroids coincide.

By using the normal rotation of the CST element as the rigid body
rotation β for the in-plane positioning of the shadow element, one avoids the
problem of fictitious normal rotations when an element is subjected to pure
stretching.

The definition θz = 1
2 ( ∂v∂x− ∂u

∂y ) gives an invariant definition of the normal
rotation for the infinitesimal case. This also provides the variation of the rigid
body rotation with respect to the visible degrees of freedom.

Extending the above definition to finite rotations seems to suggest

θz =
1
2
(tan−1(

∆v
∆x

) − tan−1(
∆u
∆y

)) . (4.5.9)

However this choice gives slightly varying results with respect to the orienta-
tion of the (x, y)-coordinate system. In order to obtain a completely invariant
positioning with respect to node numbering, the rigid body rotation can been
computed as the average of the rotations obtained with the local x-axis along
each of the three side edges. The continuum mechanics definition of the normal
rotation is θ̃z = 1

2 ( ∂v∂x − ∂v
∂x ). This definition is invariant with respect to the ori-

entation of the x and y coordinate axis, and gives the rotation gradient matrix
as

G̃i =
1

2A


 0 0 xkj 0 0 0

0 0 ykj 0 0 0
− 1

2xkj − 1
2ykj 0 0 0 0


 (4.5.10)

In the present investigation the three techniques just outlined for choos-
ing the shadow element position were tested in the nonlinear problems reported
in Chapters 7 and 8.
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Chapter 5

Quadrilateral Shell Elements.
Flat quadrilateral shell elements have use limitations even in linear analysis,
since a mesh that consists of strictly flat elements may be impossibly to construct
over a doubly-curved shell surface. For large deflection nonlinear analysis this
deficiency becomes more pronounced. Even if the initial mesh satisfies the flat
element restriction, the deformations can become so large that warping of the
elements can be significant. Finding ways of handling warped element geometries
is thus of fundamental importance for quadrilateral shell elements.

The current research initially set out to develop a non-flat quadrilateral
element that was able to satisfy self-equilibrium in a warped configuration. This
proved to be difficult. Finding a basic stiffness Kb = 1

ALCLT that maintained
self equilibrium was especially troublesome. To achieve this goal one must have
the lumped node forces from a constant stress state f = Lσ to be in self equi-
librium. Two questions arise at this point: What is a constant stress state for a
warped shell element? Is a constant stress state for a warped surface an equilib-
rium state for arbitrary element shapes? These are key questions that remain
to be answered in order to develop satisfactory FF and ANDES elements for
such element geometries. It follows that those formulations have to be further
extended for developing warped shell elements. The construction of the basic
stiffness matrix needs special attention because the Individual Element Test is
not clearly defined for curved or warped element geometries.

Restoring equilibrium in the warped element geometry can be done a
posteriori for elements developed with reference to the flat projected “footprint”
by using a projector matrix. This is the approach that has been chosen for the
current quadrilateral element. It allows independent development of the mem-
brane and bending components since these two stiffness contributions decouple,
which greatly simplifies the development of the element. Both linear and nonlin-
ear projectors have been developed for the quadrilateral element. Both versions
give identical results for linear static problems, but the linear projector is recom-
mended for linear finite element codes because its formulation is much simpler
than that of the nonlinear projector.
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5.1 Geometric definitions for a quadrilateral element.

This section describes geometric relationships for a quadrilateral element. The
development covers both warped geometry and the flat “best fit” element ob-
tained by setting the z coordinate for each node equal to zero. The flat pro-
jection relationships are later used for the development of the membrane and
bending stiffness of the shell element. The non-flat relationships are needed for
the development of the nonlinear projector for quadrilaterals.

A vector r to a point on a nonflat quadrilateral element can be parametrized
with respect to the natural coordinates ξ and η as

r(ξ, η) =



x
y
z


 =


N 0 0

0 N 0
0 0 N







x
y
z


 , (5.1.1)

where

x =



x1

x2

x3

x4


 , y =



y1
y2
y3
y4


 , z =



z1
z2
z3
z4


 , (5.1.2)

and xi, yi and zi denote the global coordinates of node i. Row vector N contains
the “usual” bi-linear isoparametric interpolation for a quadrilateral [68]. These
functions and their partial derivatives with respect to ξ and η are

N =
1
4

[ (1 − ξ)(1 − η) (1 + ξ)(1 − η) (1 + ξ)(1 + η) (1 − ξ)(1 + η) ] ,

N,ξ =
1
4

[−(1 − η) (1 − η) (1 + η) −(1 + η) ] ,

N,η =
1
4

[−(1 − ξ) −(1 + ξ) (1 + ξ) (1 − ξ) ] .

(5.1.3)
Using these geometric relations the variation of the position vector r can be
written as


dx
dy
dz


 =




∂x
∂ξ dξ + ∂x

∂ηdη
∂y
∂ξ dξ + ∂y

∂ηdη
∂z
∂ξdξ + ∂z

∂ηdη


 =




∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∂z
∂ξ

∂z
∂η




{
dξ
dη

}

=


N,ξx N,ηx

N,ξy N,ηy
N,ξz N,ηz


{

dξ
dη

}
= [gξ gη ]

{
dξ
dη

}
(5.1.4)

or
dr = Jdξ .
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The Jacobian J introduced above is also used for computing partial derivatives
with respect to the natural coordinates ξ and η:

{
∂(·)
∂ξ
∂(·)
∂η

}
=

{
∂(·)
∂x

∂x
∂ξ + ∂(·)

∂y
∂y
∂ξ

∂(·)
∂x

∂x
∂η + ∂(·)

∂y
∂y
∂η

}
=

[ ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]{
∂(·)
∂x
∂(·)
∂y

}

=
[
N,ξx N,ξy
N,ηx N,ηy

]{
∂(·)
∂x
∂(·)
∂y

} (5.1.5)

or
∂(·)
∂ξ

= JT ∂(·)
∂x

. (5.1.6)

It should be noted that only the x and y components are included in the above
relationship for the partial derivatives. This is a consequence of assuming that
the element represents a best fit of the warped quadrilateral in the (x, y)-plane.

If the z-coordinate is neglected the relationship between (x, y) and (ξ, η)
is isoparametric and the inverse relation can be formed as

{
∂(·)
∂x
∂(·)
∂y

}
=

[
J−T
xξ J−T

xη

J−T
yξ J−T

yη

]{
∂(·)
∂ξ
∂(·)
∂η

}
. (5.1.7)

5.1.1 Geometric quantities for a flat quadrilateral element.

By defining lij to be length of side edge ij one obtains

lij =
√
x2
ji + y2

ji . (5.1.8)

The unit vector sij along side ij and the outward normal vector nij of side ij
can then be defined as

sij =



six
siy
0


 =

1
lij



xji
yji
0


 and nij =



nix
niy
0


 =




−siy
six
0


 . (5.1.9)
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5.2 The quadrilateral membrane element.

Nyg̊ard [47] developed a 4-node membrane element with drilling degrees of
freedom based on the Free Formulation, which is called the FFQ element. The
element has given accurate results for plane membrane problems. Unfortunately,
the element is computationally expensive because the formation of each element
stiffness requires the numerical inversion of a 12×12 matrix. The goal of the
present development is to construct a 4-node membrane element with the same
freedom configuration and similar accuracy as the FFQ, but that avoids those
expensive matrix inversion.

Recall that element stiffness of the ANDES element is the sum of the
basic and higher order contributions:

K = Kb + Kh =
1
A

LCLT +
∫
A

BT
hCBh dA . (5.2.1)

These matrices are now developed for the membrane component.

5.2.1 Basic stiffness.
The basic stiffness for the membrane element is developed by lumping the con-
stant stress state over side edges to consistent nodal forces at the neighboring
nodes according to a boundary displacement field. When the boundary dis-
placement field is defined so that interelement compatibility is satisfied, pair-
wise cancelation of nodal forces for a constant stress state is assured, and thus
satisfaction of the Individual Element Test [11]. In turn, satisfaction of the In-
dividual Element Test ensures that the conventional multi-element Patch Test
is passed.

A very successful lumping scheme for membrane stresses was first in-
troduced by Bergan and Felippa [15] in the paper describing the triangular
membrane FF element with drilling degrees of freedoms. This procedure has
since been used by Nyg̊ard [47] and Militello [45].

The presentation here rewrites the lumping matrix, in terms of nodal
submatrices. The expressions of the lumping matrix thus becomes valid for
elements of arbitrary number of corner nodes.

It is convenient to order the visible degrees of freedom as translations
along x, y and drilling rotation about z-axis for each node. This gives the
lumping of the constant stress σ state to nodal forces f as

f = Lσ where σ =



σxx
σyy
τxy


 , (5.2.2)
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L =




L1

L2

L3

L4


 and f =




f1

f2

f3

f4


 where f i =



fxi
fyi
mzi


 . (5.2.3)

By using the Hermitian beam shape function for a side edge one obtains a bound-
ary displacement field that is compatible between adjacent elements because the
displacements along an edge are only functions of the end nodes freedoms. This
again gives a lumping matrix L where each nodal contribution Lj is only a
function of its adjoining side edges ij and jk:

Lj =
1
2


 yki 0 −xki

0 −xki yki
α
6 (y2

ij − y2
kj)

α
6 (x2

ij − x2
kj)

α
3 (xkjykj − xijyij)


 . (5.2.4)

The nodal indices (i, j, k, l) for a four node element undergo cyclic permutations
of (1, 2, 3, 4) in the equation above. Factor α represents a scaling of the contri-
butions of the drilling freedom to the normal boundary displacements; see [15]
for details.

5.2.2 Higher order stiffness.

To construct Kh a set of higher order degrees of freedoms that vanish for rigid
body and constant strain states is constructed.

Higher order degrees of freedom.
The 12 visible nodal degrees of freedom vx, vy and θ for each node are ordered
in an element displacement vector v as

v =




vx

vy

θ


 , where

vT
x = [ vx1 vx2 vx3 vx4 ] ,

vT
y = [ vy1 vy2 vy3 vy4 ] ,

θT = [ θ1 θ2 θ3 θ4 ] .

(5.2.5)

The correct rank of the element stiffness matrix for the quadrilateral membrane
element is 9, coming from 12 degrees of freedom minus 3 rigid body modes. The
basic stiffness gives is rank 3 from the 3 constant strain modes. The higher order
stiffness must therefore be a rank 6 matrix. This can be conveniently achieved
by introducing 6 higher order “intrinsic” degrees of freedom, which are collected
in a vector ṽ defined below.

Experience from the 3-node ANDES membrane element with drilling
degrees of freedom [27] and the 4-node ANDES tetrahedron solid element with
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rotational degrees of freedom [33], suggests using the hierarchical rotations θ̃ as
higher order degrees of freedom:

θ̃ = θ − θ0 , θT
0 = [ θ0 θ0 θ0 θ0 ] , (5.2.6)

where the subtracted θ0 represents the overall or mean rotation of the element,
associated with rigid body and constant strain rotation motions. Furthermore,
splitting the hierarchical rotations into their mean and deviatoric parts as

θ̃ = θ̄ + θ′, θ̄
T = [ θ̄ θ̄ θ̄ θ̄ ] , (5.2.7)

has the advantage of singling out the often troublesome “drilling mode”, or
“torsional mode”, where all the drilling node rotations take the same value with
all the other degrees of freedom being zero.

Unfortunately, the hierarchical rotations give only 4 higher order degrees
of freedom and at most a rank 4 update of the stiffness matrix. Two more higher
order degrees of freedom must be found. The element has 8 translational degrees
of freedom represented by vx and vy. The 3 rigid body and 3 constant strain
modes can all be described by the translational degrees of freedom. There are
still 2 higher order modes which can be described by the translational degrees
of freedom. These two modes must be recognized so as to associate two higher
order degrees of freedom with them. The amplitudes of the six higher order
degrees of freedom are then represented as

ṽT = [ θ′1 θ′2 θ′3 θ′4 θ̄ α1 α2 ] , (5.2.8)

where α1 and α2 are associated with the two higher order translational modes.
Although 7 degrees of freedom appear in this vector, the hierarchical rotation
constraint

4∑
i=1

θ′i = 0 (5.2.9)

reduces (5.2.8) effectively to six independent components.
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Higher order rotational degrees of freedom.
θ0 is evaluated as the rotation of the bi-linear quadrilateral computed at the
element center given by (ξ = 0, η = 0), and is function of the translational
degrees of freedom only:

θ0 =
1
2
(
∂v

∂x
− ∂u

∂y
) =

1
2

[−N,y N,x ]
{

vx

vy

}
. (5.2.10)

By using the partial derivative expressions in equation (5.1.7) one obtains the
expressions for the rigid body and constant strain rotation as

−N,y = −(J−T
yξ N,ξ + J−T

yη N,η) =
1

16|J| [x24 x31 x42 x13 ] ,

N,x = −(J−T
xξ N,ξ + J−T

xη N,η) =
1

16|J| [ y24 y31 y42 y13 ] ,
(5.2.11)

where

|J| =
1
8
((x1y2−x2y1)+(x2y3−x3y2)+(x3y4−x4y3)+(x4y1−x1y4)). (5.2.12)

The higher order rotational degrees of freedom θh can be expressed in terms of
the visible degrees of freedoms as

θh = Hθvv, θT
h = [ θ′1 θ′2 θ′3 θ′4 θ̄ ] , (5.2.13)

Hθv =




0 0 0 0 0 0 0 0 3
4 − 1

4 − 1
4 − 1

4
0 0 0 0 0 0 0 0 − 1

4
3
4 − 1

4 − 1
4

0 0 0 0 0 0 0 0 − 1
4 − 1

4
3
4 − 1

4
0 0 0 0 0 0 0 0 − 1

4 − 1
4 − 1

4
3
4

x42
f

x13
f

x24
f

x31
f

y42
f

y13
f

y24
f

y31
f

1
4

1
4

1
4

1
4




(5.2.14)
and f = 16|J|.
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Higher order translational degrees of freedom.
The translational degrees of freedom can be split into rigid body and constant
strain displacements and higher order displacements:

v = vrc + vh where v =
{

vx

vy

}
. (5.2.15)

vrc can be written as a linear combination of the rc-modes as

vrc = Ra with R = [ rx ry rθz cεxx cεyy cεxy ] , (5.2.16)

where rx, ry and rθz are the rigid translations in the x and y directions, and the
rigid rotation about the z axis, respectively. cεxx

, cεxx
and cεxx

are the constant
strain displacement modes. By combining equations (5.2.15) and (5.2.16), and
requiring that the higher order displacement vector be orthogonal to the rc-
modes, that is RTvh = 0, one obtains

RTv = RTRa + RTvh ⇒ a = (RTR)−1RTv . (5.2.17)

On the basis of this relation two projector matrices Prc and Ph that project
the displacement vector v on the rc and h subspaces, respectively, can be con-
structed:

vrc = Prcv ,

vh = Phv ,
where

Prc = R(RTR)−1RT ,

Ph = I − R(RTR)−1RT .
(5.2.18)

The higher order translational modes can now be found either as the
null-space of Prc, or as eigenvectors of Ph with associated eigenvalues equal
to one, that is Phvh = vh. The latter scheme is the simpler one because the
projector matrices enjoy the property PP = P. Every column in Ph is thus its
own eigenvector with eigenvalue one, and a higher order mode.

To write down these higher order modes in compact form it is convenient
to expresses the vector that goes from the element centroid to the nodes ri with
respect to the local coordinate system (gξ,gη). These base vectors are the ξ-
and η- gradient vectors computed at the element center according to equation
(5.1.4). The nodal vector ri can thus be expressed as

ri =
{
xi
yi

}
= [gξ gη ]

{
ξi
ηi

}
. (5.2.19)
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The nodal coordinates ξi and ηi in the (gξ,gη) coordinate system are then
obtained from{

ξi
ηi

}
= Tξ

{
xi
yi

}
, Tξ = J−1 = [gξ gη ]−1

. (5.2.20)

The higher order translational mode is then given by

vh =



ς3
ς4
ς1
ς2


 =



ξ3η3 − a
ξ4η4 − a
ξ1η1 − a
ξ2η2 − a


 , a =

1
4

4∑
i=1

ξiηi . (5.2.21)

The higher order translational degrees of freedom are the components along this
higher order mode for the x and y nodal displacements vx and vy respectively.
Expressed in term of the visible degrees of freedom this becomes

ṽt = Htvv , (5.2.22)

{
ṽx
ṽy

}
=

[
ς3 ς4 ς1 ς2 0 0 0 0 0 0 0 0
0 0 0 0 ς3 ς4 ς1 ς2 0 0 0 0

]
v . (5.2.23)

If one defines the higher order translational degrees of freedom to be the higher
order translational components along the ξ and η directions the relationship
becomes{

ṽξ
ṽη

}
=

[
ς3sξx ς4sξx ς1sξx ς2sξx ς3sξy ς4sξy ς1sξy ς2sξy 0
ς3sηx ς4sηx ς1sηx ς2sηx ς3sηy ς4sηy ς1sηy ς2sηy 0

]
v

(5.2.24)
where 0 = [ 0 0 0 0 ], and sξi and sηi denotes the unit vectors along the ξ-
and η-directions, respectively:

sξ =
{
sξx
sξy

}
, sη =

{
sηx
sηy

}
. (5.2.25)

The total higher order degrees of freedom vector ṽ can then be obtained
from the visible degrees of freedom v as

ṽ = Hv where H =
[
Hθv

Hvt

]
and

ṽT = [ θ′1 θ′2 θ′3 θ′4 θ̄ ṽξ ṽη ]

vT = [vT
x vT

y θT ] .
(5.2.26)
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Figure 5.1. Nodal strain gages for membrane.

Higher order strains.
The distribution of higher order strains is expressed in terms of natural strain
gage readings. The strain gage locations are placed at the 4 nodes (quadrilateral
corners). Readings along three directions are required. These directions are:
the ξ and η axis (quadrilateral medians) and the diagonal passing through the
neighboring nodes. See Figure 5.1.

The nodal natural strain readings are thus defined as

ε1 =



εξ
εη
ε24


 , ε2 =



εξ
εη
ε13


 , ε3 =



εξ
εη
ε24


 , ε4 =



εξ
εη
ε13


 . (5.2.27)

The next step is to connect these readings to the higher order degrees of freedom.
This can be done by defining a generic template

εi = Qiṽ , (5.2.28)

where Qi are 3 × 7 matrices. These templates are worked out below.
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Figure 5.2. Geometric dimensions for a quadrilateral element.

Higher order bending strain field.
The main displacement and strain mode that the field is trying to match is the
pure bending of the element along an arbitrary direction. The bending strain
field is associated with the higher order degrees of freedom θ′i, ṽξ and ṽη. If one
considers pure bending of the element along the ξ direction, it seems intuitive
that the ξ strain should be proportional to the distance dξ from the ξ-axis. The ξ
strain should also be proportional to the curvature along the ξ-axis. In terms of
the rotational degrees of freedoms this curvature will have the form ∆θ/lξ where
lξ is the element length along the ξ-axis. The ξ strain thus gets coefficients of
the form dξ/lξ associated with the rotational degrees of freedom. Following a
similar reasoning for the η strains the strain distribution factors associated with
the ξ and η strains are established to be

χξ|i =
dξ|i
lξ

, χη|i =
dη|i
lη

, (5.2.29)

where

dξ|i =
√

(ri × sξ) · (ri × sξ) , lξ =
√

rξ · rξ , rξ =
1
2
(r2 + r3 − r1 − r4) ,

dη|i =
√

(ri × sη) · (ri × sη) , lη =
√

rη · rη , rη =
1
2
(r3 + r4 − r1 − r2) .

The quantities dξ|i, dη|i, lξ and lη are illustrated in Figure 5.2.
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Figure 5.3. Torsional mode for four node membrane element.

The strain distribution sensed by the diagonal strain gages are similarly
assumed to be proportional to the curvature along the diagonal, and proportional
to the distance from the diagonal as

χ24 =
d24

2l24
, χ13 =

d13

2l13
, (5.2.30)

where

d24 =
√

(r31 × e24) · (r13 × e24) , l24 =
√

r24 · r24 , r24 = (r2 − r4) ,

d13 =
√

(r31 × e24) · (r13 × e24) , l13 =
√

r13 · r13 , r13 = (r1 − r3) .

Torsional strain field.
The torsional strain field is associated to the θ̄ higher order degree of freedom.
As a guide for the construction of this strain field one can use the torsional
displacement mode illustrated in Figure 5.3. This figure indicates that this dis-
placement mode should not induce shear strains, and that εξ should be positive
in 1st and 3rd quadrants and negative in 2nd and 4th. Similarly, εη should be
positive in 2nd and 4th, and negative in 1st and 3rd quadrants. A simplified
strain distribution function for the strains εξ and εη can thus be Nt = ξη.

With a unit rotation at all the nodes, the maximum displacement in the
ξ direction, uξ, will be proportional to the length lη. Since the strain εξ is the
gradient of the displacement uξ in the ξ direction this strain will be proportional
to 1/lξ. The torsional strain field is thus assumed to be

εξ = α
lη
lξ
ξη = αχξt ξη, εη = −α lξ

lη
ξη = −αχηt ξη. (5.2.31)
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Generic nodal strain templates.
With the strain assumptions just described, the nodal strain gage readings can
be written down as

Q1 = (5.2.32)
 ρ1χξ|1 ρ2χξ|1 ρ3χξ|1 ρ4χξ|1 αχξt −β1

χξ|1
χ̄ξlξ

0
−ρ1χη|1 −ρ4χη|1 −ρ3χη|1 −ρ2χη|1 −αχηt 0 −β1

χη|1
χ̄ηlη

ρ5χ24 ρ6χ24 ρ7χ24 ρ8χ24 0 β2
c24ξ

l24
−β2

c24η

l24


 ,

Q2 = (5.2.33)
−ρ2χξ|2 −ρ1χξ|2 −ρ4χξ|2 −ρ3χξ|2 −αχξt −β1

χξ|2
χ̄ξlξ

0
ρ4χη|2 ρ1χη|2 ρ2χη|2 ρ3χη|2 αχηt 0 β1

χη|2
χ̄ηlη

ρ8χ13 ρ5χ13 ρ6χ13 ρ7χ13 0 −β2
c13ξ

l13
β2

c13η

l13


 ,

Q3 = (5.2.34)


ρ3χξ|3 ρ4χξ|3 ρ1χξ|3 ρ2χξ|3 αχξt β1
χξ|3
χ̄ξlξ

0

−ρ3χη|3 −ρ2χη|3 −ρ1χη|3 −ρ4χη|3 −αχηt 0 β1χη|3
χ̄ηlη

ρ7χ13 ρ8χ13 ρ5χ13 ρ6χ13 0 −β2
c13ξ

l13
β2

c13η

l13


 ,

Q4 = (5.2.35)
−ρ4χξ|4 −ρ3χξ|4 −ρ2χξ|4 −ρ1χξ|4 −αχξt β1

χξ|4
χ̄ξlξ

0
ρ2χη|4 ρ3χη|4 ρ4χη|4 ρ1χη|4 αχηt 0 −β1

χη|4
χ̄ηlη

ρ6χ13 ρ7χ13 ρ8χ13 ρ5χ13 0 β2
c13ξ

l13
−β2

c13η

l13


 ,

where c13ξ = sT13sξ, c13η = sT13sη, c24ξ = sT24sξ and c24η = sT24sη .
The cartesian strain displacement matrices at the nodes are obtained by

the transformations

Bh1 = T13Q1 ,

Bh3 = T13Q3 ,
where T−1

13 =


 sξ

2
x sξ

2
y sξxsξy

sη
2
x sη

2
y sηxsηy

s24
2
x s24

2
y s24xs24y


 , (5.2.36)

Bh2 = T24Q2 ,

Bh4 = T24Q4 ,
where T−1

24 =


 sξ

2
x sξ

2
y sξxsξy

sη
2
x sη

2
y sηxsηy

s13
2
x s13

2
y s13xs13y


 . (5.2.37)
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A higher order strain field over the element can now be obtained by interpolating
the nodal Cartesian strains by use of the bi-linear shape functions defined in
(5.1.3).

Bh(ξ, η) = (1 − ξ)(1 − η)Bh1 + (1 + ξ)(1 − η)Bh2

+(1 + ξ)(1 + η)Bh3 + (1 − ξ)(1 + η)Bh4 .
(5.2.38)

Interpolation of these nodal strains does not automatically give a deviatoric
higher order strain field. Such a condition can be achieved by subtracting the
mean strain values:

Bd(ξ, η) = Bh(ξ, η) − B̄h where B̄h =
∫
A

B(ξ, η) dA . (5.2.39)

Optimal coefficients for the strain computation.
When computing the strain displacement expressions symbolically using Math-
ematica, the contributions of the different coefficients ρi and βi were evaluated
with respect to certain higher order strain modes. Based on pure bending of
rectangular element shapes the following dependencies between the coefficients
were obtained:

ρ2 = −ρ1 , ρ3 = ρ2 , ρ4 = ρ1 ,

ρ6 = β1 − ρ1 , β1 =
1
2

+ ρ1 ,

ρ8 = −ρ6 , ρ5 = ρ7 = β2 = 0 .

(5.2.40)

As seen this makes all the coefficients a function of ρ1. Optimizing ρ1 with
respect to irregular meshes for the cantilever described in the numerical section
suggests ρ1 = 0.1 , and the following set of optimal coefficients:

ρ1 = 0.1 ρ2 = −0.1 ρ3 = −0.1 ρ4 = 0.1
ρ5 = 0.0 ρ6 = 0.5 ρ7 = 0.0 ρ8 = −0.5

β1 = 0.6 β2 = 0.0
(5.2.41)
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Figure 5.4. Spurious membrane mode for the four node
ANDES element.

Stiffness computation for the membrane element.
According to the ANDES formulation the element stiffness is computed as

K =
1
A

LCLT + HT K̃dH where K̃d =
∫
A

BT
d CBd dA . (5.2.42)

Numerical experiments, however, indicate that the element performs better when
the element stiffness is computed as

K =
1
A

LCLT + HT K̃hH where K̃h =
∫
A

BT
hCBh dA , (5.2.43)

that is when the non-deviatoric higher order strains are used. This is not strictly
justified according to the standard ANDES formulation since the higher order
strains displacement matrix Bh is not energy orthogonal with respect to the
constant strain modes for arbitrary element geometries. However, both of the
above element stiffness matrices satisfy the Individual Element Test and thus
also the conventional Patch Test.

Rank of the stiffness matrix.
Performing an eigenvalue analysis of the element stiffness matrices given in equa-
tions (5.2.42) and (5.2.43) it was found that the element has one spurious zero
energy mode in addition to the correct three rigid body modes. This spurious
mode occurred using a 2×2 Gauss integration rule. It is expected that this spu-
rious mode would disappear with a 3×3 integration rule. For a square element
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as shown in Figure 5.4 this spurious mode is defined by the nodal displacement
pattern

vT = [ vx1 vx2 vx3 vx4 vy1 vy2 vy3 vy4 θz1 θz2 θz3 θz4 ]

= [ 1 −1 −1 1 −1 −1 1 1 4 −4 4 −4 ] .
(5.2.44)

Analysis of a mesh of two elements shows that this the pattern (5.2.44) can
not occur in a mesh of more than one element. The spurious mode is then not
practically significant for the performance of the element.

5.3 The quadrilateral bending element.

The current approach to deriving the quadrilateral plate bending element utilizes
reference lines. Hrennikoff [35] first used this concept for plate modeling where
the goal was to come up with a beam framework useful as a model for bending
of flat plates.

Park and Stanley [49,61] used the reference line concept in their devel-
opment of several plate and shell elements based on the ANS formulation. The
reference lines were used to find beam-like curvatures; these curvatures were
then used to find the plate curvatures through various Assumed Natural Strain
distributions. These plate and shell elements were of Mindlin-Reissner type, and
the reference lines were treated as Timoshenko beams.

The present element is a Kirchhoff type plate and the reference lines are
thus treated like Euler-Bernoulli (or Hermitian) beams.

5.3.1 Basic stiffness.
The basic stiffness for a flat quadrilateral bending element has been developed
by extending the triangle element lumping matrices Ll and Lq of Militello to
four node elements. Ll and Lq denotes lumping with respect to a linear and
quadratic variation in the normal side rotation respectively.

By ordering the element degrees of freedom as rotation about x and y
axis and translation in z direction for each node one obtains the lumped forces
from bending as

f = Llσ or f = Lqσ where σ =



mxx

myy

mxy


 , (5.3.1)

Ll =




Ll1

Ll2

Ll3

Ll4


 , Lq =




Lq1
Lq2
Lq3
Lq4


 (5.3.2)
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and

f =




f1

f1

f1

f1


 where f i =



mx

my

fz


 . (5.3.3)

The lumped node forces at a node j given by lumping matrix Lj , receive con-
tributions from the moments from adjoining sides ij and jk. The lumped force
vector at a node j is thus a function of the coordinates of the sides ij and jk
only. With linear interpolation of the normal and tangential rotations along a
side the lumping matrix becomes

Llj =
1
2


 0 0 0

0 −xki yki
−yki 0 −xki


 , (5.3.4)

where superscript l denotes linear variation of normal rotation. If the normal
rotation is assumed to vary quadratically in accordance to Hermitian interpola-
tion whereas and the tangential rotation still varies linearly the lumping matrix
becomes

Lqj =


 −cjksjk + cijsij cjksjk − cijsij −(s2jk − c2jk) + (s2ij + s2ij)

1
2 (s2jkxjk + s2ijxij)

1
2 (c2jkxjk + c2ijxij) −c2jkyjk − c2ijyij

1
2 (s2jkyjk + s2ijyij)

1
2 (c2jkyjk + c2ijyij) −s2jkxjk − s2ijxij




(5.3.5)
where superscript q is used to denote quadratic variation of normal rotations.
The nodal indices (i, j, k, l) in the equations above undergo cyclic permutations
of (1, 2, 3, 4) as for the membrane lumping.

5.3.2 Higher order stiffness

The higher order stiffness is computed as the deviatoric part of an ANS type
element using the Euler-Bernoulli beam as a reference line strain guide.
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Nodal curvatures of a Euler-Bernoulli beam.
The transverse displacement of a Euler-Bernoulli beam, written as a function of
the nodal displacements and rotations is

w = Nwvbij , (5.3.6)

where

NT =
1
8




2 ( 2 + ξ)(−1 + ξ)2

l ( 1 + ξ)(−1 + ξ)2

2 ( 2 − ξ)( 1 + ξ)2

l (−1 + ξ)( 1 + ξ)2


 and vbij =



wi

θni
wj

θnj


 .

The beam curvatures are

κ =
∂2w

∂x2
=

1
l2




6ξ
l (−1 + 3ξ)

−6ξ
l (−1 + 3ξ)


vbij , (5.3.7)

The nodal curvatures are then{
κij|i
κij|j

}
=

1
l2

[
−6 −4l 6 −2l

6 2l −6 4l

]
vbij (5.3.8)

The nodal displacements of a reference-line from node i to j can be expressed
in terms of the visible degrees of freedom at those nodes as

vbij = Tvijvij (5.3.9)



wi

θni
wj

θnj


 =




1 0 0 0 0 0
0 nijx nijy 0 0 0
0 0 0 1 0 0
0 0 0 0 nijx nijy







wi

θxi
θyi
wj

θyj
θyj



. (5.3.10)

The nodal curvatures expressed in terms of the visible dofs at node i and j then
become{

κij|i
κij|j

}
=

1
l2

[−6 −4l nijx −4l nijy 6 −2l nijx −2l nijy
6 2l nijx 2l nijy −6 4l nijx 4l nijy

]
v .

(5.3.11)
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Figure 5.5. Nodal curvature gages for bending.

Nodal natural coordinate curvatures for a quadrilateral.
When one collects all the nodal straingages in a vector g, the strain-gage dis-
placement relationship becomes

g = Qv = QF ∗Fv , (5.3.12)

where ∗denotes entry by entry matrix multiplication, and

gT = [κ41|1 κ12|1 κ13|1 κ12|2 κ23|2 κ24|2

κ23|3 κ34|3 κ13|3 κ34|4 κ41|4 κ24|4 ] ,
(5.3.13)

QF =




−6 4 4 0 0 0 0 0 0 6 2 2
−6 −4 −4 6 −2 −2 0 0 0 0 0 0
−6 −4 −4 0 0 0 6 −2 −2 0 0 0

6 2 2 −6 4 4 0 0 0 0 0 0
0 0 0 −6 −4 −4 6 −2 −2 0 0 0
0 0 0 −6 −4 −4 0 0 0 6 −2 −2

0 0 0 6 2 2 −6 4 4 0 0 0
0 0 0 0 0 0 −6 −4 −4 6 −2 −2
6 2 2 0 0 0 −6 4 4 0 0 0

0 0 0 0 0 0 6 2 2 −6 4 4
6 −2 −2 0 0 0 0 0 0 −6 −4 −4
0 0 0 6 2 2 0 0 0 −6 4 4




,

(5.3.14)
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F =




F41 F41 F41 F41

F12 F12 F12 F12

F13 F13 F13 F13

F12 F12 F12 F12

F23 F23 F23 F23

F24 F24 F24 F24

F23 F23 F23 F23

F34 F34 F34 F34

F13 F13 F13 F13

F34 F34 F34 F34

F41 F41 F41 F41

F24 F24 F24 F24




where

F12 =
[ 1
l212

n12x

l12

n12y

l12

]
F23 =

[ 1
l223

n23x

l23

n23y

l23

]
F34 =

[ 1
l234

n34x

l34

n34y

l34

]
F41 =

[ 1
l241

n41x

l41

n41y

l41

]
F13 =

[ 1
l213

n13x

l13

n13y

l13

]
F24 =

[ 1
l224

n24x

l24

n24y

l24

]
. (5.3.15)

Cartesian curvatures for a quadrilateral.
The cartesian curvatures κT = [κxx κyy κxy ] at the nodes can now be ob-
tained as

gC = QCv (5.3.16)

or 


κ|1
κ|2
κ|3
κ|4


 =




B1

B2

B3

B4


v =




Tκ1Q1

Tκ2Q2

Tκ3Q3

Tκ4Q4


v ,

where

Tκ
−1
1 =


 s412

x s41
2
y s41xs41y

s12
2
x s12

2
y s12xs12y

s13
2
x s13

2
y s13xs13y


 ,

Tκ
−1
2 =


 s122

x s12
2
y s12xs12y

s23
2
x s23

2
y s23xs23y

s24
2
x s24

2
y s24xs24y


 ,

Tκ
−1
3 =


 s232

x s23
2
y s23xs23y

s34
2
x s34

2
y s34xs34y

s13
2
x s13

2
y s13xs13y


 ,

Tκ
−1
4 =


 s342

x s34
2
y s34xs34y

s41
2
x s41

2
y s41xs41y

s24
2
x s24

2
y s24xs24y


 .

The Cartesian curvatures over the element can then be obtained by interpolation
of the nodal values as

κ = B(ξ, η)v , (5.3.17)
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where
B(ξ, η) = (1 − ξ)(1 − η)B1 + (1 + ξ)(1 − η)B2

+(1 + ξ)(1 + η)B3 + (1 − ξ)(1 + η)B4

. (5.3.18)

Higher order stiffness for the element.
The ANDES higher order stiffness is computed as

Kd =
∫
A

BT
d CBd dA where Bd = B − 1

A

∫
A

B dA . (5.3.19)

5.3.3 The ANS quadrilateral plate bending element.

Clearly one can form an ANS type element by

K =
∫
A

BTCB dA (5.3.20)

i.e. without extracting the mean part of the strain displacement matrix and not
including the basic stiffness described in Section 5.3.1.

5.4 The linear non-flat quadrilateral shell element.

The objective of this section is to develop a technique that allows the use of
the flat quadrilateral membrane and bending element as parts of a non-flat shell
element for linear problems. This is obtained by formulating a linear projec-
tor matrix, which for the linear case restores equilibrium at the undeformed
element geometry. This can also be obtained by using the nonlinear projector
with respect to the initial geometry. In fact the linear and nonlinear projec-
tor gives identical results for linear problems. However the linear projector is
recommended for linear finite element codes due to its greater simplicity.

The four node shell element is obtained by assembling the membrane
element and bending element to the appropriate degrees of freedom. This is
sufficient as long as the shell element is strictly flat since both the membrane
and bending elements are developed as flat elements. Unfortunately, four node
shell elements on a “real” structure quite often end up being warped. To restore
or improve the behavior of the warped element one can use a projection technique
similar to that developed by Rankin and coworkers [46,53].

The element stiffness matrix does not have the correct rigid body modes
if the element geometry is warped since the element stiffness has been developed
using the projected flat positions of the element nodes. This causes two defi-
ciencies of the element stiffness:

1. The element picks up strains and thus forces from a rigid body displace-
ment vector i.e. fr = Kvr �= 0.

100



2. The element forces are not in self equilibrium and the force vector will
thus pick up energy for a rigid body motion. vT

r f = vT
r Kv �= 0.

These two statements are equivalent for a symmetric element stiffness matrix.
If an element stiffness has columns that are in self equilibrium the element has
the correct rigid body modes and vice versa.

The foregoing deficiencies lead to the investigation of the element inter-
nal energy

Φ =
1
2
vTKv =

1
2
(vT

r + vT
d )K(vr + vd)

=
1
2
(vT

d Kvd + vT
d Kvr + vT

r Kvd + vT
r Kvr).

(5.4.1)

If the element fails the equilibrium and rigid-body conditions;

vT
r Kvr �= 0 , vT

r Kvd �= 0 and vT
d Kvr �= 0 . (5.4.2)

To extract the deformational energy, the total displacements are split into de-
formational and rigid body motions, the latter being spanned by the matrix
R:

v = vd + vr = vd + Ra. (5.4.3)

By requiring that the deformational displacement vector be orthogonal to the
rigid body modes one must have RTvd = 0. On pre-multiplying the equation
above with RT the rigid body amplitudes can be solved for:

RTv = RTRa ⇒ a = (RTR )−1Rv , (5.4.4)

from which the deformational displacement vector can be extracted as

vd = v − vr = ( I − R (RTR )−1R )v = Pdv. (5.4.5)

If R is orthonormal the foregoing expression simplifies to

Pd = I − RRT . (5.4.6)

Applying this projection to gain invariance of the internal energy with
respect to rigid body motion Φ(v) = Φ(vd) yields

Φ(vd) =
1
2
vT
d Kvd =

1
2
vTPT

d KPdv =
1
2
vTKdv . (5.4.7)
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5.4.1 Linear projector matrix for a general quad.

In order to express the rigid body modes one defines the vector ri from the
element centroid to node i as

r̃i = ri − r̄ , where ri =



xi
yi
zi


 and r̄ =

1
4

4∑
i=1

ri . (5.4.8)

By ordering the element degrees of freedom as

v =




v1

v2

v3

v4


 where vi =




vxi
vyi
vzi
θxi
θyi
θzi




(5.4.9)

the rigid body modes can be expressed as

R =




R1

R2

R3

R4


 , Ri =

[
I −Spin(r̃i)
0 I

]
=




1 0 0 0 z̃i −ỹi
0 1 0 −z̃i 0 x̃i
0 0 1 ỹi −x̃i 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 .

(5.4.10)
The projector matrix becomes

Pd = I − R(RTR)−1RT , (5.4.11)

where

RTR =
[

4I 0
0 S

]
with S = 4I −

4∑
i=1

Spin(r̃i)Spin(r̃i) .

This simplifies the computation of the projector matrix because only the lowest
3×3 submatrix of RTR is non-diagonal, and (RTR)−1 can be efficiently formed.
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5.5 Nonlinear extensions for quadrilateral shell element.

The nonlinear extensions for an element consists of defining a procedure that
aligns the shadow element C0n as close as possible to the deformed element Cn.
This defines the element deformational displacement vector vd.

One also needs to form the rotational gradient of the shadow element
with respect to the visible degrees of freedom of the deformed element, as stated
in equation (2.4.12). In the local coordinate system this relation is

δω̃r =
∂ω̃r

∂ṽi
δvi = G̃ δṽ . (5.5.1)

The local coordinate relationship is sought since this is is needed in forming the
geometric stiffness of the element as expressed in equation (2.8.22) .

The rotation of the shadow element is most easily obtained from the
rotation of the shared or common local frame for the C0n and Cn configurations.
This orthogonal element coordinate frame with unit axis vectors e1, e2 and e3

is rigidly attached to the shadow element C0n, since this element only moves
as a rigid body, and elastically attached to the deformed and elastic element
Cn. This local coordinate system for a quadrilateral element can be defined in
various ways. Most researchers select the element z-axis unit vector as the cross
product of the diagonals vectors d13 and d24

e3 =
d13 × d24

Ap
where Ap =

√
(d13 × d24)T (d13 × d24) (5.5.2)

This defines Ap as the area of the element projection on the local x− y plane.
The positioning of the x and y axis unit vectors e1 and e2 differs among

researchers. Rankin and Brogan [52] chooses e2 to coincide with the projection
of the side edge 24 on the plane normal to e3. This effectively lets only one of the
side edges determine the rigid rotation of the element about the local z axis. The
origin of the element coordinate system is chosen to coincide with node 1. When
this procedure is performed for both the C0 and Cn element configurations the
net result is that the shadow element C0n will be positioned relative to Cn so that
nodes 1 coincide and the projections of side edge 24 on the (x, y) plane coincide.
A consequence of this choice is that the element deformational displacement
vector vd, which is the difference between the coordinate between the Cn and
C0n coordinates, is not invariant with respect to the element node numbering.

Bergan and Nyg̊ard [47] choose vector e1 and e2 to coincide with the
directions of side edge 12 and 14 for a rectangle that is positioned relative to
the quadrilateral element so that the sum of the angles between the side edges
of the quadrilateral and rectangle is zero. The origin of the coordinate system
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is chosen at node 1. By applying this to both the C0 and Cn configurations the
shadow element C0n is positioned relative to the deformed element Cn so that
the element centroids coincide and so that the sum of the square of the angles
between the side edges of C0n and Cn is minimized. This represents a least
square fit with respect to the side edge angular errors. This procedure gives a
element deformational displacement vector vd which produces an internal force
vector fe = Kevd that is invariant with respect to the node numbering of the
element, provided that the element stiffness matrix Ke satisfies the correct rigid
body translations.

5.5.1 Aligning side 12 of C0n and Cn.

The element frame is positioned at the element centroid. This change from
Rankin’s positioning at node 1 has been done in order to satisfy the orthogonality
condition for PTPR = 0 as expressed in equation (2.4.43) . Rankin’s formulation
did not contain PT so this requirement was ignored.

By expressing the nodal coordinates of the element in the local coordi-
nate system equation (5.5.2) gives

ẽ3 =



ẽ3x
ẽ3y
ẽ3z


 =

1
Ap




ỹ31z̃42 − ỹ42z̃31
−x̃31z̃42 + x̃42z̃31
x̃31ỹ42 − x̃42ỹ31


 , (5.5.3)

where

Ap =
√

(ỹ31z̃42 − ỹ42z̃31)2 + (−x̃31z̃42 + x̃42z̃31)2 + (x̃31ỹ42 − x̃42ỹ31)2 .
(5.5.4)

These expressions simplify, but the full expressions has to be kept in order to
obtain the correct variation with respect to the nodal coordinates. The ω̃x and
ω̃y variation can now be obtained from the variation of e3y and e3x respectively

δω̃x = −(
∂ẽ3y
∂x̃i

δx̃i +
∂ẽ3y
∂ỹi

δỹi +
∂ẽ3y
∂z̃i

δz̃i) ,

δω̃y = (
∂ẽ3x
∂x̃i

δx̃i +
∂ẽ3x
∂ỹi

δỹi +
∂ẽ3x
∂z̃i

δz̃i) .
(5.5.5)

The variation of ω̃x and ω̃y with respect to the in-plane coordinate components
of the nodes x̃i and ỹi is zero since

∂ẽ3x
∂x̃i

=
∂ẽ3x
∂ỹi

=
∂ẽ3y
∂x̃i

=
∂ẽ3y
∂ỹi

= 0 . (5.5.6)
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This gives the variation of the in-plane rotations ω̃x and ω̃y as function of the
out of plane displacements only:

δω̃x = −∂ẽ3x
∂z̃i

δz̃i =
4∑

i=1

x̃lj
Ap
δz̃i ,

δω̃y =
∂ẽ3y
∂z̃i

δz̃i =
4∑

i=1

ỹlj
Ap
δz̃i ,

with Ap = x̃31ỹ42 − x̃42ỹ31 , (5.5.7)

where the nodal indices (i, j, k, l) takes cyclic permutations of (1, 2, 3, 4).
The e1 vector is chosen to lie along the projection of side 12 in the x-y

plane. This gives the y axis unit vector as

e2 =
e3 × r12

l12
, (5.5.8)

where l12 is the projected length of side 12 in the x-y plane. By expressing e2

in the local coordinate system the variation of ω̃z can be obtained as

δω̃z = −(
∂ẽ2x
∂x̃i

δx̃i +
∂ẽ2x
∂ỹi

δỹi +
∂ẽ2x
∂z̃i

δz̃i) . (5.5.9)

Carrying out the derivations gives

δω̃z =
1
l12

(δỹ1 + δỹ2) −
4∑

i=1

x̃ljz21
Ap

δz̃i , (5.5.10)

where Ap is defined in equation (5.5.7).
The rotation gradient matrix in equation (5.5.1) can now be expressed

as

G̃ = [ G̃1 G̃2 G̃3 ] =


 G̃ωx

G̃ωy

G̃ωz


 (5.5.11)

where

G̃1 =
1
Ap


 0 0 x42 0 0 0

0 0 y42 0 0 0
0 −Ap

l12
x42z21 0 0 0


 ,

G̃2 =
1
Ap


 0 0 x13 0 0 0

0 0 y13 0 0 0
0 Ap

l12
x13z21 0 0 0


 ,

G̃3 =
1
Ap


 0 0 x24 0 0 0

0 0 y24 0 0 0
0 0 x24z21 0 0 0


 ,

G̃4 =
1
Ap


 0 0 x31 0 0 0

0 0 y31 0 0 0
0 0 x42z31 0 0 0


 .

(5.5.12)
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The rotation gradient matrix as expressed here can be split as G̃ = X̃A
where X̃ contains all the coordinate dependencies and A is constant matrix.
This is possible since none of the vector components of δω̃ is a function of more
than three distinct coordinate expressions. This G̃ thus satisfies the consistency
requirement set forth in equation (2.5.8).

5.5.2 Least square fit of side edge angular errors.

The orientation of e3 is the same as with Rankin’s procedure, which gives identi-
cal expressions for the rotations ω̃x and ω̃y. The positioning procedure of Bergan
and Nyg̊ards [47] positioning procedure can be viewed as a least square fit of
the side edge angular errors between the C0n and Cn configurations. This gives
different expressions for the variation of the angle ω̃z with respect to the visible
degrees of freedom. The nodal submatrices G̃i of G̃ can then be defined as

Gi =
1
Ap


 0 0 xlj

0 0 ylj 0
Ap

4 (nijx

lij
− nkix

lki
) Ap

4 (
nijy

lij
− nkiy

lki
) (xljfx + yljfy)


 , (5.5.13)

where
fx =

1
4
(
z21x21

l21
+
z32x32

l32
+
z43x43

l43
+
z14x14

l14
) ,

fy =
1
4
(
z21y21
l21

+
z32y32
l32

+
z43y43
l43

+
z14y14
l14

) ,
(5.5.14)

and ñij and lij is the outward normal and length of side edge ij respectively:

nij =
1
lij




yji
−xji

0


 and lij =

√
x2
ij + y2

ij . (5.5.15)

The nodal indices (i, j, k, l) undergo cyclic permutations of (1, 2, 3, 4).
The G̃ derived above can not be expressed as G̃ = X̃A where the 3×3

matrix X̃ contains all the coordinate dependencies of G̃, since the expressions for
ω̃z contains more than three distinct coordinate expressions. This will give a loss
in convergence rate if the deformed configuration Cn and shadow configuration
C0n are far apart since the present tangent stiffness expressions have omitted
terms containing the unbalanced element forces. See Section 2.5.2.
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Chapter 6

Numerical examples for linear analysis.
This Chapter presents numerical examples of several linear test problems. These
are used to validate the formulation of the linear ANDES elements that repre-
sents the “kernel” of the co-rotational formulation.

6.1 Patch tests.
The Patch Test has become a standard test for evaluation of new finite ele-
ments. Though neither a necessary or sufficient condition for convergence, it
has a strong following who considers the test “necessary” for an element to be
considered reliable. However, there is little disagreement about the tests value
as a debugging tool when an element is implemented in an actual finite element
code.

1

1
x

y

Figure 6.1. Patch test for quadrilateral elements.

The patch shown on Figure 6.1 has been used to perform the patch
test for the new ANDES4 element by giving the boundary nodes displacements
according to a constant strain pattern. The patch test requires that the internal
nodes get displacements that satisfies this constant strain displacement mode
exactly.
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Membrane tests.
u = x ⇒ εxx =

∂u

∂x
= 1 : Identically satisfied.

v = y ⇒ εyy =
∂v

∂y
= 1 : Identically satisfied.

u = y, v = x ⇒ γxy = (
∂u

∂y
+
∂v

∂x
) = 2 : Identically satisfied.

Bending tests.

w = x2 ⇒ κxx =
∂2w

∂x2 = 2 : Identically satisfied.

w = y2 ⇒ κyy =
∂2w

∂y2 = 2 : Identically satisfied.

w = xy ⇒ κxy = 2
∂2w

∂x∂y
= 2 : Identically satisfied.

The membrane patch test for the ANDES4 element are satisfied regardless of
whether the higher order strain displacement matrix Bh or the deviatoric higher
order strain displacement matrix Bd = Bh − B̄h is used for the higher order
membrane stiffness according to equation (5.2.42) and (5.2.43).

6.2 Membrane problems.

6.2.1 Shear-loaded cantilever beam.
A shear loaded cantilever beam is defined according to Figure 8.1. This Figure
also shows the 16 × 4 regular and irregular element meshes.

48 

P=40 

12 

Figure 6.2. Cantilever under end shear. E = 30000 ν = 0.25
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The test has been run using a totally clamped boundary at the fixed
end, and the applied nodal forces on the end cross-section are consistent lumping
of a shear load with parabolic variation in the y-direction.

The comparison value is the tip deflection of 0.35583 at the end of the
beam. This number is the exact solution of the two-dimensional plane stress as
given in [28] . The numerical results have been scaled so that the analytical
displacement of 0.35583 corresponds to 100 in Table 6.1. Table 6.1 also includes
numerical results for the quatrilateral FFQ and the triangular FFT as described
by Nyg̊ard in [47].

Table 6.1. Tip deflection of cantilever beam.

Element x×y -subdivisions
4×1 8×2 16×4 32×8 64×16

Regular element mesh
CST 25.48 55.24 82.66 94.96 98.71
QSHELL3 111.78 101.18 100.03 99.97 100.01
QSHELL4 97.72 98.86 99.54 99.87 100.00

Irregular element mesh
CST 27.86 55.84 81.47 94.27 98.41
QSHELL3 98.16 100.12 99.66 99.87 99.97
QSHELL4 103.93 98.60 99.45 99.90 100.01

Table 6.1 shows very similar convergence rates for the QSHELL3 and
QSHELL4 element compared to Nyg̊ards FFT and FFQ element. However, the
ANDES elements tend to be more flexible for very coarse meshes.

6.3 Bending problems.

6.3.1 Centrally loaded square plate.

A square plate subjected to a central load of P = 40.0. The test has been run
with both simply supported and fully clamped boundary conditions.

Plate dimensions are 100.0 × 100.0 with thickness t = 2.0 and material
properties E = 1500.0 and ν = 0.2 . Due to symmetry only a quarter of the
plate have been modeled.
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Figure 6.3. 4×4 quarter model of centrally loaded square plate.

Table 6.2. Central deflection of square plate with clamped
boundary. Displacement 2.1552 is scaled to 100.00 .

Element Mesh over quarter plate
type 1×1 2×2 4×4 8×8 16×16 32×32

Regular mesh.
BCIZ-SQ 88.223 102.71 101.18 100.37 100.10 100.02
ANDES3 92.798 103.75 101.57 100.50 100.15 100.04
ANDES4 88.944 100.07 100.18 100.07 100.02 100.00

Irregular mesh.
BCIZ-SQ 88.223 99.805 101.27 99.781 99.983 99.938
ANDES3 92.798 102.48 102.38 100.40 100.23 100.02
ANDES4 88.944 99.793 101.71 100.19 100.14 100.02

6.4 Shell problems.

6.4.1 Pinched cylinder problem.

An open cylinder is subjected to two diametrically opposite point loads. Due to
symmetry only 1/8 of the problem is modeled. The geometry of the 1/8 model
is shown in Figure 6.4.

The mesh has been given an increasing distortion angle θ. As θ increases
the four node elements are no longer flat elements. This induced warping gives
different results for the projected and unprojected versions of the ANDES4 ele-
ment. The ANDES3 element is invariant under projection because the element
always possesses the correct rigid body modes.

The improvement with the projected stiffness matrix for the ANDES4
element is dramatic. This example displays the importance of correct rigid body
modes, as well as showing the robustness of the stiffness projection procedure.
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Figure 6.4. Pinched cylinder problem.

Table 6.3. Vertical displacement under load for pinched
cylinder. Displacement 4.5301×10−3 is scaled to 100.00.

Element Distortion angle
type θ = 0◦ θ = 10◦ θ = 20◦ θ = 30◦ θ = 40◦

ANDES3 Unproj 99.578 99.136 98.737 98.296 97.608
ANDES3 Proj 99.578 99.136 98.737 98.296 97.608
ANDES4 Unproj 99.430 30.594 12.652 9.381 7.960
ANDES4 Proj 99.430 99.334 99.255 99.125 98.789

6.4.2 Pinched hemisphere problem.

A hemispherical shell is subjected to two pairs of diametrically opposite loads
along the x and y axis respectively. Due to symmetry only a 1/4 model is used
according to Figure 6.5.

This problem is often modelled with a hole at the top of the hemisphere.
This allows using a mesh of strictly flat quadrilateral elements, which makes
the test much less demanding for quadrilateral elements. One has chosen to
model the hemisphere without a hole since this gives warped elements for the
quadrilateral element meshes, and thus poses a much more severe test for those
elements.

For the triangular ANDES3 two discretizations are used. Mesh 1 in
Table 6.4 refers to a mesh where two triangular elements join at the loaded
nodes, whereas Mesh 2 has one element attached to the loaded nodes.
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Figure 6.5. Pinched hemisphere problem.

Table 6.4. Displacements under loads for pinched hemi-
sphere. Displacement 9.1898×10−2 is scaled to 100.00.

Element Elements per side
type 2 4 8 12 16 20

ANDES3 Mesh 1 0.18 2.59 25.30 61.44 83.23 92.52
ANDES3 Mesh 2 0.42 4.07 31.91 68.23 86.85 94.23
ANDES4 Unproj 13.57 6.13 12.85 19.49 25.17 30.18
ANDES4 Proj 67.55 23.73 85.53 97.24 99.39 100.00

This test again shows the dramatic improvement of the performance of
the ANDES4 element when the stiffness projection is used.
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Chapter 7

Numerical examples for linearized buckling analysis.

7.1 Buckling analysis of square plate compressed in one
direction.

The buckling of a square plate subjected to in-plane uniaxial compression is
considered. The geometry and material constants of the plate are given in
Figure 7.1. The plate is simply supported along all edges with the in-plane
deformations being unconstrained.

 

L 

L 

x 

y 

Nx 

 Nx 
L = 508 mm 
t  = 3.175 mm 

E = 2.062e5 N/mm
2 

v = 0.3  

- t - 

sym sym 

Figure 7.1. Square plate subjected to uniaxial compression.

The plate is compressed in its middle plane by a uniform load Nx along
the edges x = 0 and x = L. Timoshenko [63] gives the analytical critical value
of the compressive force per unit length as

(Nx)cr =
π2D

L2
(m+

1
m

)2 where D =
Et3

12(1 − ν2)
. (7.1.1)

where L is plate side length, t is the plate thickness, ν is the Poisson’s ratio and
m is the number of half-waves in the compressive direction. The buckling modes
are associated with odd values of m.

The geometric stiffness is based on the incremental solution at a load
level of 1% of the critical load level. The results from the numerical analysis is
tabulated in Table 7.2 and compared to results obtained by Bjærum [17] with
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the QSEL and FFQC elements. The QSEL and FFQC elements performs better
than ANDES3 and ANDES4 for the higher order buckling modes. This is due
to the “tuned” higher order geometric stiffness matrix used for those elements.
However the geometric stiffness matrices used for the QSEL and FFQC element
do not give a consistent tangent stiffness for nonlinear continuation analysis.

Table 7.1. Numerical results of square plate subjected to
compression, normalized by the analytical solution of the
first mode (m = 1).

Element Analytical Mesh used for quarter of plate
Type Solution 4 × 4 8 × 8 16 × 16 32 × 32

ANDES3 m = 1: 1.000 1.008 1.002 1.000 1.000
m = 3: 2.778 3.070 2.854 2.797 2.783
m = 5: 6.760 8.342 7.270 6.893 6.798

ANDES4 m = 1: 1.000 1.043 1.011 1.002 1.001
m = 3: 2.778 3.278 2.898 2.808 2.786
m = 5: 6.760 10.11 7.522 6.950 6.815

QSEL m = 1: 1.000 1.010 1.002 1.001 1.000
m = 3: 2.778 3.032 2.840 2.793 2.782
m = 5: 6.760 8.751 7.265 6.884 6.791

FFQC m = 1: 1.000 0.973 0.993 0.998 1.000
m = 3: 2.778 2.673 2.745 2.769 2.778
m = 5: 6.760 6.750 6.694 6.738 6.754
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Figure 7.2. Buckling modes for m = 1, 3 and 5 according to equation (7.1.1)
for square plate subjected to uniaxial compression.

7.2 Buckling analysis of shear loaded square plate.

A simply supported square plate with geometry and material constants given in
Figure 7.3 is subjected to shear loads uniformly applied along the edges. The
out-of-plane displacements and rotations are constrained whereas the in-plane
rotations and translations along the boundaries are left free.

The critical shear force associated with the first buckling mode is give
analytically by Timoshenko [63] as

(Nxy)cr = 9.34
π2D

L2
where D =

Et3

12(1 − ν2)
. (7.2.1)
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Figure 7.3. Square plate subjected to shear load.

Table 7.2. Numerical results of square plate sub-
jected to shear, normalized by the analytical solu-
tion (Nxy)cr = 105.5 N

mm .

Element Mesh used for the plate
Type 4 × 4 8 × 8 16 × 16 32 × 32 64 × 64

ANDES3 m = 1: 1.446 1.145 1.057 1.013
m = 2: 2.174 1.293 1.240 1.238
m = 3: 8.631 2.974 2.709 2.675

ANDES4 m = 1: 2.175 1.297 1.088 1.022
m = 2: 3.079 1.528 1.298 1.250
m = 3: 4.300 3.013 2.739

QSEL m = 1: 1.387 1.065 1.008 0.997 0.993
m = 2: 2.096 1.385 1.268 1.242 1.233
m = 3: 207.3 3.582 2.840 2.691 2.642

FFQC m = 1: 0.781 0.908 0.967 0.987 0.994
m = 2: 1.060 1.144 1.206 1.227 1.233
m = 3: 2.073 2.301 2.518 2.614 2.643

This problem again shows that the higher order geometric stiffness ma-
trix for the QSEL and FFQC element outperforms the consistent geometric
stiffness matrix of the ANDES elements for linearized buckling analysis. The
ANDES3 element performs better than the ANDES4 element simply because
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meshes of N×N elements contains twice as many ANDES3 elements as AN-
DES4 elements since two triangles are required to fill one quadrilateral. This
gives a “finer” discretization with respect to the rigid body displacements and
thus a better global geometric stiffness matrix.
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Figure 7.4. First three buckling modes for shear loaded square plate.

Chapter 8

Numerical examples for nonlinear analysis.

8.1 Smooth path following problems.
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8.1.1 Cantilever beam subjected to end moment.

The cantilever in Figure 6.2 is used to demonstrate the large rotation and large
displacement capabilities. The problem is usually formulated so that bending
about one of the global axes takes place. The cantilever here is oriented arbi-
trarily in space so that the example becomes more demanding as regards the
treatment of finite rotations as non-vectorial quantities. The position of the
cantilever is defined by the auxiliary coordinate system


x̄
ȳ
z̄


 =

1
7


 6 −2 −3

3 6 2
2 −3 6






x
y
z


 , (8.1.1)

and letting one side of the cantilever follow the x̄-axis. This auxiliary system
is used for modeling purposes only. The actual computations take place in the
global (x, y, z)-system.

The exact solution is obtained from Bernoulli-Euler beam theory, and
gives the deflected shape of the beam as a circle with radius

R =
EI

Mȳ
. (8.1.2)

This gives the tip deflections as

w̄

L
=

EI

MȳL
(1 − cos

M − ȳL
EI

) and
v̄

L
= − EI

MȳL
sin

M − ȳL
EI

(8.1.3)

where w̄ and v̄ are the deflections in the x̄- and z̄- directions.
The problem was solved using load control with the incremental load

steps ∆Mȳ = 2π
40

ML
EI , thus requiring 40 steps to bend the beam into a full

circle. This small load step was required for the triangular element due to the
large unbalanced membrane forces that are introduced during the iterations.
The triangular element does not give symmetry about the center line of the
cantilever, and thus converges more slowly than a comparable four node element,
as described by Nyg̊ard [47] . For the ANDES4 element the beam was bent into
a full circle using 10 load steps.

Table 8.1 gives convergence rates and number of iterations for the can-
tilever modeled with 20 ANDES3 elements. The label “Fit type” refers to the
G matrix used for fitting the shadow element, with 1, 2 and 3 signifying side 12
alignment, least square fit of side edge angular errors and CST rotation, respec-
tively. “1 diag” means that side 12 is directed along the diagonal of a rectangle
assembly of two elements whereas “1 edge” means that side 12 is directed along
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Figure 8.1. Cantilever oriented arbitrarily in space
subjected to end moment.

the beam axis. Table 8.1 illustrates two points: Side 12 alignment is not orien-
tation invariant since it doubles the number of iterations of the “1 diag” mesh
compared to “1 edge”. Also, the applied load is a moment load, which gives
a geometric stiffness that does not go towards symmetry as equilibrium is ap-
proached. The symmetrized stiffness will thus give poor convergence compared
to the nonsymmetric tangent stiffness.

8.1.2 Hinged cylindrical shell under concentrated load.

The hinged cylindrical shell subjected to concentrated load is a common test
case for geometrical nonlinearities. Nyg̊ard [47] performs an extensive com-
parison with other elements. Bjærum [17] gives a thorough comparison of
different path-following algorithms for this example. The thinner shell of thick-
ness h = 6.35mm has a dramatic snap-back behavior well suited for verifying
path following capabilities of the solution algorithm.

One quarter of the shell has been modeled using 8× 8 rectangular units
of two three node elements. The actual equilibrium path shown in Figures 8.4
and 8.5 agrees well with results obtained by Nyg̊ard [47].

The arc-length algorithm did not evidence convergence difficulties. With
the thin shell the path has been followed using 26 steps and convergence was
obtained within 5 iterations even at the snap-back section of the equilibrium
path.
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Table 8.1. Iterations for the first 10 steps.

Symmetric stiffness

Fit type Num. of iterations Conv.

1 edge. 4 4 5 5 6 7 8 8 8 9 L
1 diag. 9 9 9 9 9 10 11 9 10 10 L
2 5 5 5 6 6 7 8 8 8 8 L
3 4 4 5 5 6 7 8 8 8 9 L

Non-symmetric stiffness

Fit type Num. of iterations Conv.

1 edge. 4 4 4 4 4 4 4 4 4 4 Q
1 diag. 8 8 8 9 8 8 9 9 9 9 Q
2 5 5 5 5 5 5 5 5 5 5 Q
3 4 4 4 4 4 4 4 4 4 4 Q
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Figure 8.2. Tip displacements of the cantilever beam
subjected to end moment.

8.1.3 Pinching of a clamped cylinder.

A cantilevered cylinder is subjected to two diametrically opposite forces of mag-
nitude F at the open end. Due to symmetry only a quarter of the structure is
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R = 2540 mm 
L = 254 mm 
h = 6.35 mm or 12.7 mm 

E = 3.10275 N/mm2  
v  = 0.3 

 θ = 0.2  rad 
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Figure 8.3. Geometry and material properties for
hinged cylindrical shell.

modelled. The problem has been studied by Stander et al. [60] and Parisch
[48] using uniform element meshes. Mathisen, Kvamsdal and Okstad [43] have
studied this problem using adaptive mesh techniques. The present analysis was
performed using displacement control of the loaded point with 16 equal step up
to a total displacement of 1.6 times the radius of the cylinder.
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Figure 8.6. Geometry and material properties for the
pinched cylinder problem.
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Z-displacement
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Figure 8.4. Vertical deflection at points A and B
for hinged cylindrical panel with t = 12.7mm.
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Figure 8.5. Vertical deflection at points A and B
for hinged cylindrical panel with t = 6.35mm.

This example shows that the ANDES4 element is better than the AN-
DES3 element with respect to membrane strain gradients. A mesh of 16×16
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ANDES3 elements diverges before the analysis is completed, whereas a mesh
of 16×16 ANDES4 elements is sufficient to complete the analysis as shown in
Figure 8.7. The results in Figure 8.7 shows good agreement with the results ob-
tained by Stander et al. [60] and Parish [48], both of whom used quadrilateral
elements.
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Parisch 16x16

Figure 8.7. Vertical displacement at loading point for the
pinched cylinder problem.

Figure 8.8. Deformed finite element mesh at various loads.
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8.1.4 Stretched cylinder with free ends.

A open cylinder with free ends are subjected to two diametrically opposite forces
at the halflength. Geometric data for the cylinder are given in Figure 8.9. This
problem was first discussed by Gruttman et al. [32], and later by Perić and
Owen [50]. Figure 8.10 shows the results of the present analysis with a mesh of
8×16 ANDES4 elements compared with Perić and Owens analysis using a mesh
of 10×20 elements. The displacement of the loaded point agrees well with the
results reported in [50] .
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L = 10.35 
R = 4.935 
h = 0.094 
E = 10.5e+6 
ν = 0.3125 
F = 50.0 

Figure 8.9. Geometry and material properties for the
stretch cylinder problem.
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Figure 8.10. Load displacement curves for the
stretched cylinder problem.

Figure 8.11. Deformed finite element mesh at various loads.
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8.2 Path-following problems with bifurcation.

8.2.1 Post-buckling analysis of square plate compressed in one di-
rection.

The geometry and material properties of the square plate are presented in Figure
7.1. The applied load is normalized with respect to the analytical buckling load
for this problem given in equation (7.1.1) .

The post-buckling analysis is performed in order to evaluate the stiffness
properties of the plate after bifurcation is encountered. One has used a 8×8
mesh of ANDES4 elements over the quarter model. This mesh gave about 1%
error in determining the linearized buckling load.
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Figure 8.12. Out of plane displacement at plate center for square plate
subjected to compression.

As seen in the load displacements curves in Figure 8.12 the structure
shows a stable post-buckling response where it can withstand increased load
after bifurcation. Figure 8.12 also shows the response of the plate with various
geometric imperfection levels. The buckling mode of the structure has been
scaled so that the largest out of plane imperfection is equal to 1%, 10% and 50%
of the plate thickness.
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8.2.2 Post-buckling analysis of shear loaded square plate.

The geometry and material properties of the square plate are described in Figure
7.3. The applied load is normalized with respect to the analytical buckling load
Nxycr = 105.5 N

mm .
A 16×16 mesh of ANDES3 elements over the quarter model is used.

This mesh gave about 5% error in determining the linearized buckling load. It
should be noted that the shear loaded plate has traditionally been a difficult
problem for triangular elements.
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Figure 8.13. Out of plane displacement at plate center for square plate
subjected to compression.

As seen in the load displacements curves in Figure 8.13 the structure
shows a stable post-buckling response where it can withstand increased load
after bifurcation. Figure 8.13 also shows the response of the plate with various
geometric imperfection levels. The buckling mode of the structure has been
scaled so that the largest out of plane imperfection is equal to 1% and 10% of
the plate thickness.
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8.2.3 Buckling of a deep circular arch.

This problem of snap-through of a deep circular arch has been investigated by
Huddlestone [37] . The asymmetric displacement path has been studied by Si-
mons et al. [59] and Feenstra and Schellekens [23] using a small geometric
imperfection to induce the buckling mode. Bjærum [17] analyzed the prob-
lem using branch switching to follow the secondary path. The present analysis
follows Bjærum’s in that no imperfection is used, and the branch switching
algorithm has been used to traverse the bifurcation and continuing along the
secondary path.

The dimensions of the arch are given in Figure 8.14. The arch has hinged
boundary conditions at both ends and is modelled using 20 quadrilateral shell
elements with the z displacements constrained.
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L/2 L/2 
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z 

P 

R = 1000 mm 
L = 1600 mm 
H = 400 mm 
h = 10 mm 

E = 2.1e+5 N/mm2 

ν  = 0 

Figure 8.14. Geometry and material properties for the deep
circular arch.

Figure 8.15 shows the response of the structure for the primary path, and
the secondary path obtained by doing a branch switching at the first bifurcation
point at PR2

EI = 13.2. Bjærum reports a bifurcation point at PR2

EI = 12.0, and
from his plot of the secondary path one can see that the load then jumps to
approximately 13.0. Such a gap between detected and converged bifurcation
points as reported by Bjærum can indicate an inconsistent tangent stiffness
matrix. The deflections of these paths are also illustrated in Figure 8.16

The problem displays some puzzling behaviour. For instance, the pri-
mary path appears not to intersect with the secondary path. The primary path
keeps doing spiraling motions for the vertical displacement versus load as plot-
ted in Figure 8.17. For each spiraling motion another wavelike deformation is

129



Displacement

Lo
ad

-100 0  100  200  300  400  500  600  700
-10

 -5

0

  5

 10

 15

 20

Vertical disp. secondary path
Vertical disp. primary path
Horizontal disp. secondary path

Figure 8.15. Displacements for the primary and secondary paths.

Figure 8.16. Deformations for the secondary and primary paths.

fed into the arch as shown in Figure 8.18. The fact that the primary and sec-
ondary path do not intersect can be discerned from the fact that the primary
path never achieves the same vertical deflection for the midpoint of the arch as
the secondary path.

The secondary path keeps doing figure-of-eight like motions for the mid-
point of the arch. The branch switching algorithm does not pick up a new bifur-
cation point at the bottom point of the secondary path as would be expected.
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Figure 8.17. Vertical displacement for the primary path.
Numbers 1 2 and 3 show the location of the deformed
element geometries in Figure 8.18.

1) 

2) 

3) 

Figure 8.18. Displacements for the primary path. Numbers refer to
the load-displacement curves in Figure 8.17.

This conclusion seems to agree with Bjærum, since no such bifurcation point is
reported. The “mismatch” is a surprise since one expects the structure to be
able to pick up additional load once it hits bottom. But detecting and switching
to the new stable path seems to be computationally difficult.
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8.2.4 Right angle frame subjected to in-plane load.

The right angle frame in Figure 8.19 is subjected to a in-plane load. The applied
load acts on the lower corner of the tip. This problem has been studied by Nour-
Omid and Rankin [46] in the post-critical domain.
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W 

F 

- t - 

L   = 255.0 mm 
W  =   30.0 mm 
t    =     0.6 mm 
E   = 71240 N/mm 
ν   = 0.31 

Figure 8.19. Geometry and material properties for
the right angle frame.

Table 8.2 lists the critical loads given by different element types and
mesh refinements. Results from Nour-Omid and Rankin are included in Table
8.2 for comparison. The postcritical response for the structure is shown in Figure
8.20 for different element meshes with ANDES3 and ANDES4 elements.

Table 8.3 gives the number of steps and iterations for this problem with
the various consistent formulations. The convergence rates are measured at
the stable “upswing” section of the equilibrium path. For large sections of the
analysis this convergence rate is not obtained due to ill-conditioning at the “flat”
section of the equilibrium path.
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Table 8.2. Critical load for the right angle frame.

Element type Num. of elements Fcr

ANDES3 17×2 1.164
ANDES3 68×2 1.142
ANDES3 153×2 1.135
ANDES4 17 1.146
ANDES4 68 1.134
ANDES4 153 1.130
Nour-Omid & Rankin [46] 17 1.138
Nour-Omid & Rankin [46] 64 1.130

Table 8.3. Convergence of the 17×2 ANDES3 mesh.

Symmetric stiff. Non-symmetric stiff.
Formulation N.steps N.iter. C.rate. N.steps N.iter. C.rate.
C 18 179 L. 18 152 Q.
CSE 18 174 Sl. 18 145 Q.
CSSE 18 145 Q. 18 145 Q.

Figure 8.20. Post buckling response for the right angle frame.
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Figure 8.21. Deformations for F = 1.164, F = 1.26 and F = 2.0
with a mesh of 17×2 ANDES3 elements.
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8.2.5 Right angle frame subjected to end moments.

The following two problems were modeled with the beam elements de-
scribed in Appendix 1. The problems were included in the present work because
of the numerical challenges they offer as regards branch switching and continu-
ation algorithms.
The right-angle frame subjected to end moments was first introduced by Argyris
[3] and later studied by Nour-Omid and Rankin [46] . The frame has been mod-
eled using 10 Timoshenko beam elements for a half model. Beam elements have
been chosen to model the frame since the moment loads are impossible to intro-
duce for shell elements without using follower forces that are non-conservative
and hence introduce follower-load stiffness matrix. Such a contribution has not
been implemented for the shell elements developed in this work.

L L 

W 

- t - 

L   = 255.0 mm 
W  =   30.0 mm 
t    =     0.6 mm 
E   = 71240 N/mm 
ν   = 0.31 

Mz -Mz 

Figure 8.22. Geometry and material properties for
the symmetric frame.

The response of the structure displays two distinct equilibrium paths.
The primary path has only displacements in the x-y plane, whereas the sec-
ondary path switches to out of plane displacements after bifurcation. The
response shows that the frame rotates a full 360◦ as the frame ends rotate
through a full circle about the z axis. Finally the frame rotates back to the
x-y plane with the load reversed. The out of plane bifurcation happens at
Mz = ±Mcr = 6.464Nmm. The analysis can be run repeated indefinitely. If
the bifurcation starts at Mz = +Mcr a full out of plane revolution will be ob-
tained at Mz = −Mcr. A second revolution will then take place after which the
structure finally returns to the same configuration of the first bifurcation with
load Mz = +Mcr.
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Figure 8.23. y and z displacements for the apex of the right
angle frame.
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Figure 8.24. Deformations for the for the frame subjected to
end moments. Arrows indicate direction of motion.

8.2.6 Cable Hockling.

An initially straight cable is subjected to a tip torsional moment. One end of
the cable is fully clamped, whereas the loaded tip is free to rotate about the
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longitudinal x axis, and moves along it. No rotation is allowed about the y
and z axes at the loaded end. The material and geometrical properties of the
cable are defined in Figure 8.25. The Euler-Bernoulli beam element described
in Appendix 1 is used to discretize the cable.
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Ix  = 2.16 mm4 
Iy = Iz = 0.0833 mm4 
E = 71240 N/mm4 
ν  = 0.31 
G = 27190 N/mm4 

L 

Mx 

Figure 8.25. Cable geometry and material properties.

This problem was first studied in the postbuckling regime by Nour-Omid
and Rankin [46]. The cable exhibits linear response with twisting and no lateral
displacement up to the bifurcation point. After bifurcation the cable forms a
loop with the loaded end moving towards the clamped end. Finally a full circular
loop is formed after the path has traversed a second bifurcation point and the
applied load returns back to zero.

The analysis is made more stable by restricting the midpoint of the
cable from moving out of the x-y plane. The position of the loop is otherwise
undetermined in the y-z plane. The equilibrium path has been followed without
this restriction, but the convergence rate is impaired. This additional boundary
condition is consistent with that used by Nour-Omid and Rankin.
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Figure 8.26. Cable hockling. Moment versus tip rotation.
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Figure 8.27. Deformations for the for the cable subjected to
end moment.

138



Chapter 9

Conclusions.

9.1 Summary of work.

The main objective to the present research has been the development, appli-
cation and evaluation of low-order, high-performance shell finite elements to
the analysis of the geometrically nonlinear static response and stability of shell
structures. The technology for constructing such elements within the framework
of the FF and ANDES formulations, however, has been well developed to date
only for linear elasticity and flat element geometries. This motivated the use of
the co-rotational kinematic description to facilitate reuse of such technology in
the intended applications. Although such a choice carries with it some modeling
limitations, such as restriction to small deformational strains, it was felt that
the advantages of starting from a sound theoretical foundation outweighed those
limitations.

The co-rotational kinematic description of geometrically nonlinear struc-
tural finite element is still an evolving subject actively pursued by several re-
search groups. The departure point of for the formulation developed here has
been the work of two such groups: Bergan and co-workers at Trondheim-NTH
and Rankin and co-workers at Lockheed Palo Alto Research Laboratory. The
formulations produced by these groups share the ability of handling arbitrarily
large rigid body motions (translations and rotations) without causing element
self-straining. Taken separately, however, the formulations lack certain desirable
attributes investigated during the course of this research.

The main contribution of the present work towards co-rotational the-
ory has been the development of a unified formulation that satisfies those at-
tributes identified as most desirable: self-equilibrium, consistency, invariance,
symmetrizability and element-independence. The unified formulation includes
those of the aforementioned groups in a hierarchical framework, in the sense
that they can be recovered by making certain simplifying kinematic and static
assumptions. This unification offers additional flexibility to finite element de-
velopers in that tradeoffs between simplicity, robustness and generality can be
more clearly understood.

The nonlinear response of the co-rotational finite element models is ob-
tained by incremental/iterative continuation methods. The equilibrium-path-
following algorithm combines a standard arc length predictor phase with two
alternative versions of a true-Newton corrector phase. One version implements
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the normal-plane corrector of Riks-Wempner whereas the other version imple-
ments the orthogonal trajectory accession corrector proposed by Fried. Both
predictor and corrector algorithms as well as the equilibrium-convergence ac-
ceptance criterion are treated with scaling techniques that aim to make the
solution algorithm performance insensitive to mesh adaptation or refinement
processes as well as independent of the physical units chosen for the model. The
numerical experiments reported in Chapter 8 indicate that the orthogonal tra-
jectory corrector in general outperformed the normal plane corrector in terms
of robustness and allowance of larger stepsizes when tracing smooth response
paths. The normal plane corrector, however, is still preferable when dealing
with traversal of the bifurcation points.

A modification of the predictor-corrector continuation algorithm to han-
dle traversal of bifurcation points has been developed. The modified algorithm
is enabled when a critical point detected along the equilibrium path is classi-
fied as being of bifurcation type. The identification relies on linearized buckling
analysis carried out at two “bracketing” configurations in the neighborhood of
the point. The estimated buckling mode is used to initiate branch switching into
the outgoing (secondary) path. The corrector constraint is modified to avoid the
“switch-back” to the incoming (primary) path. This modification has proven to
be robust in handling symmetric bifurcation points in the test problems reported
here.

The development of high-performance triangular and quadrilateral shell
finite elements as “linear kernels” to be used in the co-rotational description is
based on the ANDES formulation. Both element geometries include the corner
drilling rotation as membrane degrees of freedom. The main contribution of
the present work to element technology is the construction of a new four-noded
quadrilateral shell element using assumed strain distributions for the higher-
order stiffness component. This element is derived with reference to a flat
geometry defined by the median plane of the generally-warped quadrilateral.
Projector matrices are used to fulfill self-equilibrium conditions in the warped
geometry. The numerical results indicate that the new quadrilateral element
delivers modeling accuracy similar to that of the Free Formulation Quadrilat-
eral (FFQ) of Nyg̊ard, but without the burden of numerical inversion of 12×12
matrices required in the formation of the FFQ higher order stiffness.

The numerical results reported in Chapters 6, 7 and 8 indicate that the
three-pronged combination of hierarchical co-rotational formulation, discretization-
independent nonlinear solution algorithm and ANDES based shell elements gen-
erally handled the test problems in a robust and computationally efficient man-
ner. The performance of co-rotated 3-D beam elements in several difficult prob-
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lems involving very large rotations reinforces that conclusion as regards the
co-rotational formulation as well as the path-following and branch-switching
algorithms developed in this research. Performance expectations had to be
tempered, however, in the case of linearized prebuckling problems discussed
in Chapter 7. For such problems, elements with specially tuned plate-bending
geometric stiffness are observed to deliver better buckling load prediction for
coarse discretizations.

9.2 Directions for future research.
The present co-rotational formulation of geometrically nonlinear analysis has
shown to be robust and computationally effective in conjunction with low order
elements. These include two-node beam elements, three-node triangular shell
element, and “moderately” warped four-node quadrilateral shell elements. For
the latter it is shown that reasonable physical behavior can be obtained with
the use of best-fit and projection techniques to pass, back and forth, from the
actual warped configuration to the flat projection on the quadrilateral-median
plane.

On the other hand, higher order elements such as three noded beams and
nine-noded shell quadrilaterals would not be adequately handled by the present
co-rotational description because the geometry of the shadow element and the
deformed element can drift far apart even in the absence of significant mem-
brane strains. This “element-level snap-through” is illustrated in Figure 2.4. A
co-rotational description that works properly for higher order elements would
be desirable to handle certain troublesome, but nevertheless practical, modeling
situations. (One such example would be a mesh that contains both low-order
and higher-order elements, with the former being treated by co-rotational for-
mulation.) Extending the shadow element concept to curved geometries appears
to clash with the element independence attribute. Furthermore, a naive imple-
mentation may bring up metric-update complications typically associated with
the Updated Lagrangian and convected-coordinate description, losing the key
benefit of “reuse” of linear elements.

Another research area that merits attention is the extension to nonflat
shell elements of high-performance elements development methods that rely on
the Free Formulation, ANDES formulation and their variants. Such methodol-
ogy has given excellent results for flat, low-order elements. The key ingredient
is the basic-plus-higher-order decomposition of the stiffness equations, with the
basic component taking care a priori of the satisfaction of the Individual Ele-
ment Test (IET). The methodology is extended here to cover warped four-node
quadrilaterals through projector techniques. However, as discussed in Section
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2.11, projectors can significantly change the stiffness properties of highly warped
elements. Such changes would be unacceptable for higher order, high precision
elements.

The key difficulty in extending the FF and ANDES formulations to
higher order, initially curved beam and shell elements centers on the construction
of the basic stiffness matrix. This requirement poses in turn two question sets
that offer opportunity for further research work:

(a) How can a converged equilibrium stress state be precisely characterized
over an initially curved element? Can this state be defined in a con-
tinuous form without going through an “element dimension shrinking”
limiting process? Or, can the state be characterized discretely through
Barlow points without undergoing a limiting process?

(b) How does the solution of (a) impact the definition of the IET? And, can
the IET be made to hold for shell elements (or shell and beam elements)
intersecting at finite angles?

It seems unlikely that the two preceding questions can be fully answered in
the near future. Most likely they may have to be addressed by first looking at
restricted kinds of curved geometries, such as cylinders and spheres. One such
“incremental research path” might be to consider an infinite, circular-cylinder
thin shell under pure extension, pure torsion and uniform pressure solicitations,
and study the perturbation of the exact solution states induced by laying out
an arbitrary mesh on the surface. Such studies may have to rely heavily on
computer algebra systems.

As regards nonlinear solution algorithms for tracing equilibrium paths,
the present state of the art in arc length methods and their variants appears to
satisfactory handle many routine problems, including traversal of smooth limit
points. Certain refinements and extensions to cover difficult cases may, however,
be worth pursuing. Among these the following study areas may be cited:

(1) More comprehensive evaluation of the relative effectiveness of the stan-
dard arc length correctors based on pre-defined algebraic constraints
(e.g. the normal-plane and hyperspherical correctors) versus the orthog-
onal trajectory corrector, and in particular, sensitivity of the latter to
the type of critical point (limit vs. bifurcation) to be traversed.

(2) Robust and effective techniques for automatic traversal of unsymmet-
ric bifurcation points in the absence of a governing energy functional,
and smart procedures for “branch switching” from a secondary to the
primary path without recourse to special techniques such as artificial
imperfections or dynamics.
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A final general recommendation concerns the beneficial “symbiotic” effect of
motivated research. It would be desirable to pursue one or more of the afore-
mentioned research topics not in a thematic isolation, but as component of an
application-driven, integrated research program.
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Appendix 1

Beam elements.

A1.1 Linear beam elements.
The linear tangent stiffness matrix for the Euler-Bernoulli beam can be found in
several sources such as Hughes [38]. Expressed in local coordinate system with
the local x axis along the beam element as shown in Figure A1.1, the element
stiffness matrix is

K̃e =




EA
l 0 0 0 0 0
0 12EIz

l3 0 0 0 6EIz

l2

0 0 12EIy

l3 0 −6EIy

l2 0
0 0 0 GIx

l 0 0
0 0 −6EIy

l2 0 4EIy

l 0
0 6EIz

l2 0 0 0 4EIz

l

−EA
l 0 0 0 0 0

0 −12EIz

l3 0 0 0 −6EIz

l2

0 0 −12EIy

l3 0 6EIy

l2 0
0 0 0 −GIx

l 0 0
0 0 −6EIy

l2 0 −2EIy

l 0
0 6EIz

l2 0 0 0 −2EIz

l

−EA
l 0 0 0 0 0

0 −12EIz

l3 0 0 0 6EIz

l2

0 0 −12EIy

l3 0 −6EIy

l2 0
0 0 0 −GIx

l 0 0
0 0 6EIy

l2 0 −2EIy

l 0
0 −6EIz

l2 0 0 0 −2EIz

l
EA
l 0 0 0 0 0
0 12EIz

l3 0 0 0 −6EIz

l2

0 0 12EIy

l3 0 6EIy

l2 0
0 0 0 GIx

l 0 0
0 0 6EIy

l2 0 4EIy

l 0
0 −6EIz

l2 0 0 0 4EIz

l




(A1.1)

where Ix, Iy and Iz are moments of inertia associated with bending about x,
y and z axis respectivly. E is Young’s modulus and the shear modulus G is
expressed with respect to Young’s modulus and Poisson ratio ν as G = E

2(1+ν) .
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Using the same local coordinate system and material and cross-section
definitions one can express the Timoshenko beam [38] with reduced integration
on the shear energy as

K̃e =




EA
l 0 0 0 0 0
0 GA

l 0 0 0 GA
2

0 0 GA
l 0 −GA

2 0
0 0 0 GIx

l 0 0
0 0 −GA

2 0 (EIy

l + GAl
4 ) 0

0 GA
2 0 0 0 (EIz

l + GAl
4 )

−EA
l 0 0 0 0 0

0 −GA
l 0 0 0 −GA

2

0 0 −GA
l 0 GA

2 0
0 0 0 −GIx

l 0 0
0 0 −GA

2 0 (−EIy

l + GAl
4 ) 0

0 GA
2 0 0 0 (−EIz

l + GAl
4 )

−EA
l 0 0 0 0 0

0 −GA
l 0 0 0 GA

2

0 0 −GA
l 0 −GA

2 0
0 0 0 −GIx

l 0 0
0 0 GA

2 0 (−EIy

l + GAl
4 ) 0

0 −GA
2 0 0 0 (−EIz

l + GAl
4 )

EA
l 0 0 0 0 0
0 GA

l 0 0 0 −GA
2

0 0 GA
l 0 GA

2 0
0 0 0 GIx

l 0 0
0 0 GA

2 0 (EIy

l + GAl
4 ) 0

0 −GA
2 0 0 0 (EIz

l + GAl
4 )




.

(A1.2)

A1.2 Nonlinear extensions.
The local co-rotated chosen for two node beam elements has the local x axis on
the line through node 1 and 2 as illustrated in Figure A1.1.

in1 =
1
l
(x2 − x1) where l = ‖(x2 − x1)‖ . (A1.3)

The initial local z axis is given by the vector i03, which will usually be defined
by input data. Based on the rotation of each node R1 and R2 one compute a
rotated nodal z-axis for each node and the mean z axis zm as

z1 = R1i03, z2 = R2i03 and zm = z1 + z2 . (A1.4)
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In general zm will not be perpendicular to the beam element, or the local x axis.
The zm vector is chosen to be in the local (x, y) plane by computing the local y
axis as the cross-product of the local z and x axis

in2 =
zm×in1
f

where f = ‖zm×in1‖ . (A1.5)

Finally, the perpendicular z axis is computed as

in3 = in1 ×in2 . (A1.6)

This defines the element transformation matrix

Tn =


 in1

T

in2
T

in3
T


 . (A1.7)
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Figure A1.1. Local coordinate system a beam element.

Variation of this coordinate definition, measured in local coordinate sys-
tem, gives the rigid body rotation of the element with respect to the visible
degrees of freedom as

δω̃r = G̃δṽ (A1.8)

where

G̃ =


 0 − 1

l
z̃mx

z̃mz
0 z̃1z

z̃mz
0 − z̃1x

z̃mz
0 1

l
z̃mx

z̃mz
0 z̃2z

z̃mz
0 − z̃2x

z̃mz

0 0 1
l 0 0 0 0 0 − 1

l 0 0 0
0 − 1

l 0 0 0 0 0 1
l 0 0 0 0


 .

(A1.9)
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In the equation above l is the element length and the local coordinate z vectors
are defined as


z̃1x
z̃1y
z̃1z


 = Tnz1,



z̃2x
z̃2y
z̃2z


 = Tnzz and



z̃mx

z̃my

z̃mz


 = Tnzm (A1.10)

where z1, z2 and zm are defined in equation (A1.4) .
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