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1 Introduction

Stokes waves describe nonlinear, periodic surface gravity waves in inviscid fluids. Unlike linear wave
theory, Stokes’ perturbation approach accounts for wave steepness, making it suitable for steeper
waves encountered in ocean engineering. This tutorial explores the fifth-order Stokes wave theory,
focusing on the dispersion relation and kinematic quantities (pressure, velocities, and accelerations)
for both finite and infinite water depths.

2 Theorethical background

Stokes wave theory expands the wave solution as a perturbation series in wave steepness, € = ka, where
k is the wave number and a is the amplitude. The fifth-order approximation includes terms up to €5,
providing accurate predictions for moderately steep waves. The theory assumes an inviscid,
incompressible fluid with irrotational flow, governed by the Laplace equation and nonlinear boundary
conditions at the free surface. For finite depth h, the dispersion relation and kinematics depend on
hyperbolic functions (e.g., cosh(kh), tanh(kh)), while in infinite depth (kh — ), these simplify to
exponential forms. Key quantities include dynamic pressure p, horizontal velocities u and v, vertical
velocity w, and accelerations ax, ay, and az

Theoretical Background Water wave theory begins with the simplest model: linear Airy waves, named
after George Biddell Airy (Airy 1841) solves assume small wave amplitudes relative to wavelength
and depth, leading to a linearized set of governing equations. Under these assumptions, the free surface
elevation n(x, t) of a progressive wave in one dimension is sinusoidal:

N = a cos(kx — wt)

where a is the wave amplitude, k is the wave number (k = 2z/A, with 1 the wavelength), o is the angular
frequency, and the phase kx—wt determines the wave’s propagation. Note that the mathemathical
formulation is presented in a fashion where the basic Airy wave elevation follows a cosinus and not
sinus. This means that to be consistent with AquaSim the angle ¢ in this presentation is -n/2 relative
to the other theory documents. The dispersion relation for Airy waves is:

w? = gk tanh(kh)

where g is gravitational acceleration and h is water depth. This relation connects wave frequency to
wavelength and depth, with tanh(kh) transitioning from shallow-water (w o k) to deep- water (o «
k) behavior as kh increases. The linearity assumption simplifies the boundary conditions at the free
surface, neglecting higher-order terms in the amplitude a, making Airy waves symmetric and non-
steepening. However, real ocean waves often exhibit nonlinearity, especially as wave steepness (ka)
increases. In 1847, George Gabriel Stokes introduced a perturbation expansion to account for these
effects (Stokes1847). Stokes proposed that the surface elevation and velocity potential could be
expressed as power series in the wave steepness parameter ¢ = ka:

N =acos¢ + ca’kB,, cos2d + e2a3k?B33 cos 3 d + -+

cI)_a(»coshk(z+h)
~ k  sinhkh

sin ¢ + higher-order terms
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where @ is the velocity potential, ¢ = kx — wt + ¢o is the phase, and Bn, are coefficients determined
by solving the nonlinear boundary conditions order by order. At first order (¢7), this reduces to the
Airy solution, but higher orders introduce harmonic components (e.g., Cos 2¢, cos 3¢), causing wave
crests to sharpen and troughs to flatten—a hallmark of nonlinear waves. The Stokes expansion assumes
an inviscid, incompressible fluid with irrotational flow, gov- erned by the Laplace equation in the fluid
domain. The key challenge lies in satisfying the nonlinear kinematic and dynamic boundary conditions
at the free surface :
on 0dodn 0P

Ki ticc—+ ——=—,
inematic T + 9% Ox 97

D j a¢+1|Vd>|2+ =
ynamic: 3t T3 gn =

In Airy theory, these are linearized by assuming small # and ", but Stokes retains the nonlinear terms,
solving iteratively. At second order, a cos 2¢ term emerges, adjusting the dispersion relation and
kinematics. By fifth order, terms up to &5 (i.e., cos 5¢) are included, providing accuracy for steeper
waves (ka = 0.3 or higher). John Fenton advanced this framework in 1985, deriving explicit
coefficients and dispersion relations for the fifth-order Stokes wave in both finite and infinite depths
Fenton1985. In finite depth, hyperbolic functions like cosh k(z + h) and sinh kh dominate the solutions,
reflecting the influence of the seabed. In infinite depth (kh — o), these simplify to exponentials (ekz
), as the bottom boundary’s effect vanishes. Fenton’s work provides the D2 and D4 coefficients for the
dispersion relation and Bnn coefficients for the surface elevation and kinematics, en- abling practical
computations of pressure, velocities, and accelerations—Kkey quantities in ocean engineering and
wave-structure interaction studies. This tutorial focuses on the fifth-order Stokes theory, bridging the
gap between Airy’s linear waves and the nonlinear regime, with equations applicable to both finite and
infinite depths

3 Mathematical Formulation
This section outlines the dispertion relation and the expressions for pressure,

3.1 Dispersion Relation

The dispersion relation relates the angular frequency w to the wave number k. For fifth-order Stokes
waves:

3.1.1 Finite Depth
In finite depth, the dispersion relation includes nonlinear corrections:

w? = gk tanh(kh) [1 + (ka)?D, + (ka)*D,]

The dispersion relation relates the angular frequency o to the wave number k. For fifth-order Stokes
Wwaves.
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Do = 9 — 8 cosh?(kh) + 8 cosh*(kh)
2T 8 sinh*(kh) ’
_ 384 cosh®(kh) — 448 cosh*(kh) + 72 cosh?(kh) + 9
e 128 sinh® (kh) '

This equation is solved iteratively, as implemented in the bisection method of the subroutine.

3.1.2 Infinite Depth
For deep water (kh > 10), tanh(kh) — 1, and the dispersion simplifies to:

1
? = gk [1 + (ka)? + E(ka)“‘].
The higher-order terms reflect the nonlinear steepening of deep-water waves.

3.2 Kinematic Quantities

3.2.1 Surface Elevation
The surface elevation 5(x, y, ¢) is:

N =acos + a’kB,, cos2$ + a®k?Bs3 cos3$ + a*k3Byy cos4 ¢ + a’k*Bss cos 5

Where p = wt — k(x cosB + y sinf) + ¢y, B isthe wave direction, and the coefficients Bnn

are:

1 3 1 5
B;y=1B,, == Bas==¢? Byy ==€3 Bex = —¢*
11 22 =5 Baz =3 44 =3 55 = T¢

3.2.2 Finite Depth
The pressure and velocities at depth z (—h <z <p) are

B B coshk (z+ h) N 2p cosh2k(z+ h) 2+
P =pgaBu g cosbtpgatBn g o coszb A

B coshk (z+ h) ,,, Cosh2k(z+h)
u —waBlchos¢+2wa B, Snh2kh cos2¢ + -\
sinhk (z+ h) ,., Sinh2k(z+h)
w = —maBllwsmcb — 2wa“B,, snh2 kA sin2¢ + -,

with acc

Page 6 of 10



Technical note aquastructures

elerations derived as a,, = du/ dt, a, = a, sinf, a, = dw/ dt up to fifth order.

3.2.3 Ininite Depth
The pressure and velocities at depth z (=4 <z <) are

p = pgaB;,e*? cos d + pga®B,,e? % cos2 ¢ + -
u = waB;,;e"? cos ¢ + 2wa’®B,,e?*% cos 2 + -

w = —waB;,e" sinp — 2wa’B,,e**?sin2 ¢ + -

with accelerations similarly computed up to fifth order

4  Examples

4.1 Case 1 beam at water line
A beam in the water line seen in Figure 1 is used as base case

File Edit Commands Tools Windows

Help
|l/ﬂ_' Fe Eu Ba B = Export Copy model bl OB OE &~ O M2 @ ~ X v = Ot «~ A4 R 0O ™
Toggles Components
Grid |Axis || Membranes | Membrane side |Membrane vertical | Shapes

Crossection | Normals |Snap | [

Nodes (1)

B Node
Location <0.0, 0.0, 0.0> .
DOF O @]
Nr of springs 1

buoy X |laee

Tool properties

Selection model Mixed

Figure 1 Beam at surface

The environmental data is given in Table 1.

Table 1 Environment data

Wave amplitude, a, [m] 1
Wave period, T, [s] 4
Wave numer, k, [1/m] 0.25

Page 7 of 10



Technical note aqutructures

4.1.1 Case 1 version 1, springs

In this case mass and volume of the beam is set to 0 and buoys are attached to the nodes as shown in
Figure 2.

= Spring
Name buoy|
Type Buoy LJ
Maximum force 0.0N
B Stiffness
X 0.0 Njfm
Y 0.0 Nfm
z 1E5 N/m

|E Stiffness rotation

Figure 2 Buoys at nodes

Figure 3 shows results. In Figure 3

Airy surface analytic is the surface according to prediction by Airy wave.
Vertical displacemen is the vertical displacement of the beam

Stokes surface analytic is the wave elevation of the Stokes 5™ order wave.

1.5

1

E 05
o
ke
2 0
g
g= -0.5
-1
-1.5
Time [s]
— Airy surface analytic Vertical displacement x  Stokes surface analytic
Figure 3

As seen from Figure 3 the beam follows the surface exactly as it is supposed to.

4.1.2 Case 1l version 2

In this case the beam is modelled with volume and weigh as shown in Figure 4.
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E] Material properties
E-modulus
G-modulus

[ Cross sectional properties
Area
Iy
Iz
It

B Weight and volume per meter length
Volume
Mass density
Weight in air

() weight in water

Material / section properties
Stress calculation

Element loads
Advanced

Figure 4

2.1E11Nfm~2
8.08E10 Nfm~2

0.620465m"2
1.210294 m"4
1.210294 m"4
2.420587 m~4

12,566371m”3jm
1.0379E4 kg/m~3
§440.0 kg/m

-6440,52988 kg/m

In this case the cmparison was done with wave period, T =5 s. Comparison is shown in Figure 5 and
results shown that for the Stokes wave the displacement upwards is larger and downwards less which
is logical given the shape and buoyancy of the Stokes wave relative to the Airy wave.
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Figure 5 Airy wave to the left and Stokes wave to the right.
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