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1 Introduction 
Stokes waves describe nonlinear, periodic surface gravity waves in inviscid fluids. Unlike linear wave 

theory, Stokes’ perturbation approach accounts for wave steepness, making it suitable for steeper 

waves encountered in ocean engineering. This tutorial explores the fifth-order Stokes wave theory, 

focusing on the dispersion relation and kinematic quantities (pressure, velocities, and accelerations) 

for both finite and infinite water depths. 

2 Theorethical background 
Stokes wave theory expands the wave solution as a perturbation series in wave steepness, ε = ka, where 

k is the wave number and a is the amplitude. The fifth-order approximation includes terms up to ε5, 

providing accurate predictions for moderately steep waves. The theory assumes an inviscid, 

incompressible fluid with irrotational flow, governed by the Laplace equation and nonlinear boundary 

conditions at the free surface. For finite depth h, the dispersion relation and kinematics depend on 

hyperbolic functions (e.g., cosh(kh), tanh(kh)), while in infinite depth (kh → ∞), these simplify to 

exponential forms. Key quantities include dynamic pressure p, horizontal velocities u and v, vertical 

velocity w, and accelerations ax, ay, and az 

Theoretical Background Water wave theory begins with the simplest model: linear Airy waves, named 

after George Biddell Airy (Airy 1841) solves assume small wave amplitudes relative to wavelength 

and depth, leading to a linearized set of governing equations. Under these assumptions, the free surface 

elevation η(x, t) of a progressive wave in one dimension is sinusoidal: 

η = 𝑎 cos(𝑘𝑥 − ω𝑡) 

where a is the wave amplitude, k is the wave number (k = 2π/λ, with λ the wavelength), ω is the angular 

frequency, and the phase kx−ωt determines the wave’s propagation. Note that the mathemathical 

formulation is presented in a fashion where the basic Airy wave elevation follows a cosinus and not 

sinus. This means that to be consistent with AquaSim the angle  in this presentation is -/2 relative 

to the other theory documents. The dispersion relation for Airy waves is: 

ω2 = 𝑔𝑘 tanh(𝑘ℎ) 

where g is gravitational acceleration and h is water depth. This relation connects wave frequency to 

wavelength and depth, with tanh(kh) transitioning from shallow-water (ω ∝ k) to deep- water (ω ∝ 

√k) behavior as kh increases. The linearity assumption simplifies the boundary conditions at the free 

surface, neglecting higher-order terms in the amplitude a, making Airy waves symmetric and non-

steepening. However, real ocean waves often exhibit nonlinearity, especially as wave steepness (ka) 

increases. In 1847, George Gabriel Stokes introduced a perturbation expansion to account for these 

effects (Stokes1847). Stokes proposed that the surface elevation and velocity potential could be 

expressed as power series in the wave steepness parameter ε = ka: 

 

η = 𝑎 cos ϕ + ε𝑎2𝑘𝐵22 cos 2 ϕ + ε2𝑎3𝑘2𝐵33 cos 3 ϕ + ⋯ 

Φ =
𝑎ω

𝑘

cosh 𝑘 (𝑧 + ℎ)

sinh 𝑘 ℎ
sin ϕ + higher-order terms 
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where Φ is the velocity potential, ϕ = kx − ωt + φ0 is the phase, and Bnn are coefficients determined 

by solving the nonlinear boundary conditions order by order. At first order (ε1), this reduces to the 

Airy solution, but higher orders introduce harmonic components (e.g., cos 2ϕ, cos 3ϕ), causing wave 

crests to sharpen and troughs to flatten—a hallmark of nonlinear waves. The Stokes expansion assumes 

an inviscid, incompressible fluid with irrotational flow, gov- erned by the Laplace equation in the fluid 

domain. The key challenge lies in satisfying the nonlinear kinematic and dynamic boundary conditions 

at the free surface : 

𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐:
∂η

∂𝑡
+

∂Φ

∂𝑥

∂η

∂𝑥
=

∂Φ

∂𝑧
, 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐:
∂Φ

∂𝑡
+

1

2
|∇Φ|2 + 𝑔η = 

 

In Airy theory, these are linearized by assuming small η and ∇Φ, but Stokes retains the nonlinear terms, 

solving iteratively. At second order, a cos 2ϕ term emerges, adjusting the dispersion relation and 

kinematics. By fifth order, terms up to ε5 (i.e., cos 5ϕ) are included, providing accuracy for steeper 

waves (ka ≈ 0.3 or higher). John Fenton advanced this framework in 1985, deriving explicit 

coefficients and dispersion relations for the fifth-order Stokes wave in both finite and infinite depths 

Fenton1985. In finite depth, hyperbolic functions like cosh k(z + h) and sinh kh dominate the solutions, 

reflecting the influence of the seabed. In infinite depth (kh → ∞), these simplify to exponentials (ekz 

), as the bottom boundary’s effect vanishes. Fenton’s work provides the D2 and D4 coefficients for the 

dispersion relation and Bnn coefficients for the surface elevation and kinematics, en- abling practical 

computations of pressure, velocities, and accelerations—key quantities in ocean engineering and 

wave-structure interaction studies. This tutorial focuses on the fifth-order Stokes theory, bridging the 

gap between Airy’s linear waves and the nonlinear regime, with equations applicable to both finite and 

infinite depths 

3 Mathematical Formulation 
This section outlines the dispertion relation and the expressions for pressure,  

3.1 Dispersion Relation 
The dispersion relation relates the angular frequency ω to the wave number k. For fifth-order Stokes 

waves: 

3.1.1 Finite Depth 

In finite depth, the dispersion relation includes nonlinear corrections: 

 

ω2 = 𝑔𝑘 tanh(𝑘ℎ) [1 + (𝑘𝑎)2𝐷2 + (𝑘𝑎)4𝐷4] 

The dispersion relation relates the angular frequency ω to the wave number k. For fifth-order Stokes 

waves:  
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𝐷2 =
9 − 8 cosh2(𝑘ℎ) + 8 cosh4(𝑘ℎ)

8 sinh4(𝑘ℎ)
,\ 

𝐷4 =
384 cosh6(𝑘ℎ) − 448 cosh4(𝑘ℎ) + 72 cosh2(𝑘ℎ) + 9

128 sinh8(𝑘ℎ)
. 

 

This equation is solved iteratively, as implemented in the bisection method of the subroutine. 

3.1.2 Infinite Depth 

For deep water (kh > 10), tanh(kh) → 1, and the dispersion simplifies to: 

 

ω2 = 𝑔𝑘 [1 + (𝑘𝑎)2 +
1

2
(𝑘𝑎)4]. 

 

The higher-order terms reflect the nonlinear steepening of deep-water waves. 

 

3.2 Kinematic Quantities 

3.2.1 Surface Elevation 

The surface elevation η(x, y, t) is: 

η = 𝑎 cos ϕ + 𝑎2𝑘𝐵22 cos 2 ϕ + 𝑎3𝑘2𝐵33 cos 3 ϕ + 𝑎4𝑘3𝐵44 cos 4 ϕ + 𝑎5𝑘4𝐵55 cos 5 

 

Where 𝜙  =  𝜔 𝑡  −  𝑘 (𝑥  cos 𝛽   +  𝑦  sin 𝛽)  +  𝜑0 ,  𝛽  is the wave direction, and the coefficients Bnn 

are:  

𝐵11 = 1  𝐵22 =
1

2
   𝐵33 =

3

8
ε2  𝐵44 =

1

3
ε3  𝐵55 =

5

16
ε4 

3.2.2 Finite Depth 

The pressure and velocities at depth z (−h ≤ z ≤ η) are 

𝑝 = ρ𝑔𝑎𝐵11

cosh 𝑘 (𝑧 + ℎ)

sinh 𝑘 ℎ
cos ϕ + ρ𝑔𝑎2𝐵22

cosh 2 𝑘(𝑧 + ℎ)

sinh 2 𝑘ℎ
cos 2 ϕ + ⋯ ,\ 

𝑢 = ω𝑎𝐵11

cosh 𝑘 (𝑧 + ℎ)

sinh 𝑘 ℎ
cos ϕ + 2ω𝑎2𝐵22

cosh 2 𝑘(𝑧 + ℎ)

sinh 2 𝑘ℎ
cos 2 ϕ + ⋯ ,\ 

𝑤 = −ω𝑎𝐵11

sinh 𝑘 (𝑧 + ℎ)

sinh 𝑘 ℎ
sin ϕ − 2ω𝑎2𝐵22

sinh 2 𝑘(𝑧 + ℎ)

sinh 2 𝑘ℎ
sin 2 ϕ + ⋯, 

 

with acc 
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elerations derived as 𝑎𝑥 = ∂𝑢/ ∂𝑡 , 𝑎𝑦 = 𝑎𝑥 sin 𝛽, 𝑎𝑧 = ∂𝑤/ ∂𝑡 up to fifth order. 

 

3.2.3 Ininite Depth 

The pressure and velocities at depth z (−h ≤ z ≤ η) are  

 

𝑝 = ρ𝑔𝑎𝐵11𝑒𝑘𝑧 cos ϕ + ρ𝑔𝑎2𝐵22𝑒2𝑘𝑧 cos 2 ϕ + ⋯ 

𝑢 = ω𝑎𝐵11𝑒𝑘𝑧 cos ϕ + 2ω𝑎2𝐵22𝑒2𝑘𝑧 cos 2 ϕ + ⋯ 

𝑤 = −ω𝑎𝐵11𝑒𝑘𝑧 sin ϕ − 2ω𝑎2𝐵22𝑒2𝑘𝑧 sin 2 ϕ + ⋯  

 

with accelerations similarly computed up to fifth order 

 

4 Examples 
 

 

4.1 Case 1 beam at water line  
A beam in the water line seen in Figure 1 is used as base case 

 

Figure 1 Beam at surface 

The environmental data is given in Table 1.  

Table 1 Environment data 

Wave amplitude, a, [m] 1 

Wave period, T, [s] 4 

Wave numer, k, [1/m]  0.25 
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4.1.1 Case 1 version 1, springs 

In this case mass and volume of the beam is set to 0 and buoys are attached to the nodes as shown in 

Figure 2.  

 

Figure 2 Buoys at nodes 

Figure 3 shows results. In Figure 3  

Airy surface analytic is the surface according to prediction by Airy wave. 

Vertical displacemen is the vertical displacement of the beam 

Stokes surface analytic is the wave elevation of the Stokes 5th order wave.  

 

Figure 3 

As seen from Figure 3 the beam follows the surface exactly as it is supposed to.  

4.1.2 Case 1 version 2  

 

In this case the beam is modelled with volume and weigh as shown in Figure 4. 
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Figure 4 

In this case the cmparison was done with wave period, T = 5 s. Comparison is shown in Figure 5 and 

results shown that for the Stokes wave the displacement upwards is larger and downwards less which 

is logical given the shape and buoyancy of the Stokes wave relative to the Airy wave.  

 

 

Figure 5 Airy wave to the left and Stokes wave to the right.  
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