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Summary: 
 
The option to account for convolution-based hydrodynamic forces on Beam and Membrane components has 
been introduced to AquaSim. This implementation allows for including memory-effects that arise from 
frequency-dependent added mass and damping in time-domain simulations. 
 
A test case demonstrates that including the convolution term can lead to a reduction in structural response and 
mooring loads under irregular sea states. Consequently, analyses performed without convolution may provide 
more conservative estimates.  
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1 Introduction 
This document outlines the options available in AquaSim for analysing hydrodynamic forces. 

When the added mass is frequency dependent, meaning it varies with the wave period, the 

system response cannot be fully captured using constant coefficients.  

AquaSim provides two methods for accounting for this frequency dependence. By default, the 

added mass and hydrodynamic damping is calculated at the mean zero-crossing period of the 

wave spectrum. However, as the added mass depends on the frequency it introduces a 

memory-effect, leading to the appearance of a convolution integral in the time-domain 

equations of motion.  

This convolution integral, often referred to as the retardation function, represents the 

cumulative influence of past fluid-structure interactions on the current motion. In AquaSim, 

this effect can be included as an alternative to using constant values at the mean zero-crossing 

period. The methodology to compute this contribution is outlined in this document. 
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2 Theoretical background 
The conventional approach for modeling radiation forces in time-domain is governed by 

Cummins’ equation, which incorporates a convolution integral to represent the memory effect 

of radiated waves (Cummins, 1962). The convolution integral depends on a retardation 

function derived from frequency-dependent radiation damping, capturing how past velocities 

affect the current force. However, direct numerical evaluation of this integral can be 

computationally intensive and prone to convergence issues, particularly in nonlinear systems 

subjected to irregular wave spectra. These challenges stem from the need to store and 

integrate over a long velocity history, which can amplify numerical errors, especially when 

high-frequency components are present in the wave spectrum. 

To address these issues, a modified approach has been developed that splits the radiation force 

into two components: an explicit damping term, based on a characteristic wave frequency, and 

a modified convolution integral that accounts for the residual damping. This document 

outlines the theoretical foundation of this modified approach, presents the necessary 

mathematical formulations. Further test cases are presented and discussed.  

2.1 Frequency-Domain Representation of Radiation forces 
In the frequency domain, the radiation force exerted on a floating structure due to its 

oscillatory motion at frequency ω is characterized by complex hydrodynamic coefficients: the 

added mass A(ω) and the radiation damping B(ω). Assuming harmonic motion 𝑥(𝑡) =

R{𝑥̂𝑒𝑖ω𝑡}, the corresponding radiation force can be expressed as: 

𝐹rad(ω) = −𝑖ω[𝐴(ω) + 𝑖𝐵(ω)]𝑥̂ = −ω2𝐴(ω)𝑥̂ − 𝑖ω𝐵(ω)𝑥̂. 

This relation captures how the structure’s velocity and acceleration induce hydrodynamic 

forces due to radiated waves. While frequency-domain models are useful for linear analyses, 

time-domain simulations require a formulation that accommodates arbitrary motion histories 

and nonlinear effects. 
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2.2 Time-Domain Formulation: Cummins’ Equation 
To enable time-domain analysis, (Cummins, 1962) derived an equation of motion based on 

the system’s impulse response. The radiation force is represented via a convolution integral 

that captures memory effects due to wave radiation: 

(𝑀 + 𝐴∞)𝑥̈(𝑡) + ∫ 𝐾(𝑡 − τ)𝑥̇(τ)𝑑τ
𝑡

0

+ 𝐶𝑥(𝑡) = 𝐹exc(𝑡) + 𝐹other(𝑡), 

where: 

− M: Structural mass. 

− A∞: Added mass at infinite frequency. 

− 𝑥̈(t),𝑥̇(t), x(t): Acceleration, velocity, and displacement. 

− K(t): Retardation function (radiation kernel). 

− C: Hydrostatic stiffness. 

− Fexc(t): Wave excitation force. 

− Fother(t): Other forces, such as nonlinear or viscous contributions 

The radiation force, 𝐹rad(𝑡), given by the convolution integral ∫ 𝐾(𝑡 − τ)𝑥̇(τ)𝑑τ
𝑡

0
, represents 

the memory effect of waves radiated by the structure’s motion. The retardation function K(t) 

is derived from the frequency-dependent radiation damping B(ω) via the inverse Fourier 

transform. The retardation function K(t) captures the fluid’s memory effect, transforming 

frequency- dependent damping into the time domain: 

𝐾(𝑡) =  
2

𝜋
∑ 𝑐ℎ(𝜔𝑖)𝑐𝑜𝑠(𝜔𝑖𝑡)Δ𝜔𝑖

𝑁

𝑖=1

 

where: 

− •ch(ωi): Hydrodynamic damping coefficient at frequency ωi (kg/s), 

− •ωi: Wave frequency (rad/s), 

− •∆ωi: Frequency increment (rad/s), 

− •N: Number of frequency components. 

This is an approximation of the inverse Fourier transform of ch(ω). 
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2.3 The modified Convolution Approach 
To improve numerical stability, the radiation force is reformulated by separating the radiation 

damping into an explicit term and a modified convolution integral: 

𝐹rad(𝑡) = −𝐵𝑥̇(𝑡) − ∫ 𝐾′(𝑡 − τ)𝑥̇(τ)𝑑
𝑡

0

 

where: 

• B = B(ωz ): Radiation damping evaluated at the characteristic frequency ωz = 2π/Tz , 

where Tz is the zero-crossing period of the wave spectrum (e.g., JONSWAP or Pierson-

Moskowitz). 

• K′(t): Modified retardation function, accounting for the residual damping B′(ω) = B(ω)− 

B. 

This can be expressed in relation to the original retardation function: 

𝐾′(𝑡) = 𝐾(𝑡) − 𝐵δ(𝑡) 

where δ(t) is the Dirac delta function, representing the constant damping B in the frequency 

domain. In numerical implementation, the delta function contribution is handled by the 

explicit damping term  −𝐵𝑥̇(𝑡), and the convolution integral evaluates the effect of K′(t).  

The explicit damping term −𝐵𝑥̇(𝑡) is computed using the current velocity x(t), making it a 

local force that does not require historical data. The modified convolution integral,∫ 𝐾′(𝑡 −
𝑡

0

τ)𝑥̇(τ), captures the dynamic memory effect but with a reduced amplitude. K′(t) is 

approximated by the inverse cosine transform of the residual damping spectrum: 

𝐾′(𝑡) ≈ ∑ 𝐵𝑛
′

𝑁

𝑛=1

cos(ω𝑛𝑡) 

as 𝐵′(ω) = 𝐵(ω) − 𝐵 typically has a lower magnitude than B(ω). 

2.4 Modified Radiation Force as a Sum over Wave 
Components 

In the analysis, the irregular sea is described with N wave components, each characterized by 

an angular frequency ωn and an associated spectral weight. In this context, the radiation force 

is expressed as a sum over these components, where the damping at each frequency 

contributes to the force via a corresponding oscillatory kernel. We define the total radiation 

force as: 

𝐹rad(𝑡) = −𝐵 𝑥̇(𝑡) − ∑ 𝐵𝑛
′ ∫ cos[𝜔𝑛(𝑡 − 𝜏)]

𝑡

0

𝑥̇(τ)

𝑁

𝑛=1

 𝑑𝜏 

Or  
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𝐹rad(𝑡𝑘) ≈ −𝐵 𝑥̇(𝑡𝑘) − ∑ 𝐵𝑛
′ ∑ cos[𝜔𝑛(𝑡𝑘 − 𝑡𝑗)]

𝑘

𝑗=0

𝑥̇(𝑡𝑗)

𝑁

𝑛=1

 Δ𝑡 

with: 

− B = B(ωz ) being the radiation damping evaluated at the characteristic wave mean 

crossing frequency ωz = 2π/Tz, 

− B′n = B(ωn) – B as the residual damping for each component, 

− ωn as the discrete angular frequencies representing the sea state, 

− N as the number of wave components used in the spectral description. 

− 𝑡𝑘 = 𝑘Δ𝑡 and {𝑥}̇ (𝑡𝑗) is the velocity history at discrete time steps.  

This spectral approach offers both physical transparency and numerical robustness. The 

convolution is reduced to a weighted sum of elementary cosine functions, each modulated by 

the velocity history 𝑥̇(𝜏). The numerical implementation involves storing the velocity history 

and computing a convolution sum over past time steps for each wave component. While this 

is computationally more demanding than using a single damping term, so it is a balance as 

whether to apply this instead of values at the mean zero crossing period. 

2.5 Pros and cons of including convolution integral 
The pros of not including convolution are as follows: 

− Simplicity: Easy to implement, requiring only a single set of hydrodynamic coefficients. 

− Computational Efficiency: Avoids complex integrals, reducing simulation time. 

− Suitability for Narrow-Banded Waves: Effective when the wave spectrum is dominated 

by a single frequency. 

Whereas the downsides are:  

− Reduced Accuracy: Neglects frequency-dependent variations, leading to errors in 

broadband wave conditions. 

− No Memory Effects: Fails to account for the influence of past motions on current forces. 

− Limited Applicability: Less suitable for irregular sea or systems with strong frequency 

dependence. 

The advantages of including convolution are:  

− High Accuracy: Captures frequency-dependent effects and memory effects, ideal for 

broadband waves. 

− Physical Realism: Accounts for the influence of past motions, critical for systems with 

strong damping variations. 

− Versatility: Suitable for nonlinear, transient, and coupled responses in irregular seas. 

Whereas the downsides of this is:  

− Computational Complexity: The convolution integral increases simulation time and 

resource demands. 

− Numerical Challenges: Requires careful discretization to avoid instability or aliasing. 
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− Data Requirements: Needs comprehensive frequency-domain hydrodynamic data 

A practical analysis strategy can be to perform the primary (bulk) analysis using coefficients 

at mean zero-crossing period, then evaluate the most critical or dynamically sensitive 

conditions through convolution integral.  

3 Implementation to AquaSim 
Hydrodynamic damping through convolution is only applicable for irregular wave conditions. 

For regular waves, AquaSim calculates added mass and damping at the corresponding wave 

period.  

3.1 Choice of methodology in AquaEdit 
In irregular waves, the default is to omit the convolution integral and apply values for added 

mass and hydrodynamic damping at the mean zero crossing period. If convolution is to be 

introduced on Beam components, it must be ticked off in the “Advanced” properties section 

as shown in Figure 1. 

 

Figure 1 How to enable hydrodynamic damping by convolution for Beam with load formulation Hydrodynamic 

For membrane panels where added mass and hydrodynamic damping is evaluated with 

numerical method, convolution integral is introduced in the section “Impermeable properties”, 

as seen in Figure 2. 

 

Figure 2 Enabling convolution for membrane panels 
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3.2 Evaluation of results 
For Beam- and Membrane components that are exposed to hydrodynamic loads, results can be 

evaluated both as forces per component per timestep, and graphically in the result-files.  

3.2.1 Convolution forces on membrane panels 
Results are also written to file #convolution.txt where the convolution force to each 

component for each step of the analysis is presented as shown in Figure 3. 

 

Figure 3 Convolution force to each component for each timestep in the analysis 

Where the convolution force Fconv is expressed as: 

 

𝐹conv(𝑡𝑘) = ∑ 𝐵𝑛
′ ∑ cos[𝜔𝑛(𝑡𝑘 − 𝑡𝑗)]

𝑘

𝑗=0

𝑥̇(𝑡𝑗)

𝑁

𝑛=1

 Δ𝑡 

This force term represents the memory effect associated with the frequency-dependent added 

mass and is subtracted from the other external forces acting on the structure. The convolution 

force can be evaluated as a distributed load, expressed in terms of force per projected area, 

and resolved into its directional components along global coordinates (x-, y-, z-), as illustrated 

in Figure 4. 
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Figure 4 Convolution force presented as force per area in AquaView 

3.2.2 Convolution forces on beams 
Convolution forces on beams are written to file in the same way as for membranes and results 

are shown in terms of force per m beam in the graphic result (avz) file as shown in Figure 5. 

 

Figure 5 Convolution force presented as force per meter in AquaView 

Figure 6 shows max axial forces in mooring lines at a time instant for the analyzed irregular 

sea state. 
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Figure 6 Axial forces in mooring lines 

Table 1 shows max forces in the eight mooring lines from the analysis, and how much the 

maximum forces are reduced in case convolution is included. 

Table 1 Comparison max forces with- and without convolution 

  Max force [kN] Max force [kN] Convolution 

  With convolution No convolution Reduction [%] 

Mooring line 1 - 52mm 19.84 20.27 2.11 % 

Mooring line 2 - 52mm 18.84 18.84 0.00 % 

Mooring line 3 - 52mm 18.84 18.84 0.00 % 

Mooring line 4 - 52mm 22.16 23.04 3.81 % 

Mooring line 5 - 52mm 23.58 23.80 0.89 % 

Mooring line 6 - 52mm 55.88 58.88 5.10 % 

Mooring line 7 - 52mm 55.91 58.83 4.96 % 

Mooring line 8 - 52mm 20.65 20.70 0.27 % 

 

It is seen from Table 1 that forces are reduced by up to 5% for mooring line no. 6. In this 

table, all forces include pretension. Further, Table 2 present the same comparison only with 

pretension and response from current subtracted. 

Table 2 Maximum forces where pretension and response from current subtracted 

  Max force [kN] Max force [kN] Convolution 

  With convolution No convolution Reduction [%] 

Mooring line 1 - 52mm 1.00 1.43 29.94 % 

Mooring line 2 - 52mm 0.00 0.00 - 

Mooring line 3 - 52mm 0.00 0.00 - 

Mooring line 4 - 52mm 2.66 3.54 24.78 % 

Mooring line 5 - 52mm 3.90 4.12 5.14 % 

Mooring line 6 - 52mm 14.72 17.72 16.93 % 

Mooring line 7 - 52mm 14.76 17.68 16.52 % 

Mooring line 8 - 52mm 1.81 1.86 2.95 % 
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As shown in Table 2, which only considers wave forces, the resulting additional mooring 

forces due to wave excitation are reduced by up to approximately 30%. This is a significant 

effect. Furthermore, it is observed that incorporating the convolution term generally leads to a 

reduction of forces in the mooring lines. This indicates that using the classical formulation 

without convolution is a conservative estimate.  

4 Conclusion 
The option to account for convolution-based hydrodynamic forces on Beam and Membrane 

components has been introduced to AquaSim. This implementation allows for including 

memory-effects that arise from frequency-dependent added mass and damping in time-

domain simulations. 

A test case demonstrates that including the convolution term can lead to a reduction in 

structural response and mooring loads under irregular sea states. Consequently, analyses 

performed without convolution may provide more conservative estimates.  
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