

Nets with bending restistance AquaSim TR-FOU-2222-5

Revision 1

Customer: Internal

AQUASTRUCTURES

Nets with bending resistance AquaSim

Report no.:	TR-FOU-2222-5		
Date of this revision:	20.05.2016		
Number of pages:	15		
Distribution:	Open		
Author:	Are Johan Berstad	Key words:	Net with bending resistance, AquaSim

Summary:

This document presents the possibility to analyze nets including the bending stiffness of the nets in AquaSim.

1	20.05.2016	AJB	-	Nets with bending resistance
Revision no.	Date	Author	Verified by	Description

	TR-FOU-2222-5		aquastructures Page 3 of 15
Author: AB	Verified by: -	Revision: 1	Published: 20.05.2016

Content

1	Introd	luction	4
2	Theor	retical formulation	4
3		ation	
	3.1 V	alidation case 1 one element	4
	3.1.1	Springs at all 4 corners	4
	3.1.2	Free hanging net exposed to current and waves	5
	3.1.3	Comparison of bending stiffness, 10 element model	
	3.1.4	Comparison of results for a typical fish farm cage	8
4	Aquas	Sim implementaton	9
5	Apper	ndix, example input files	12
		Dine element case	
	5.2 Te	en element case	13

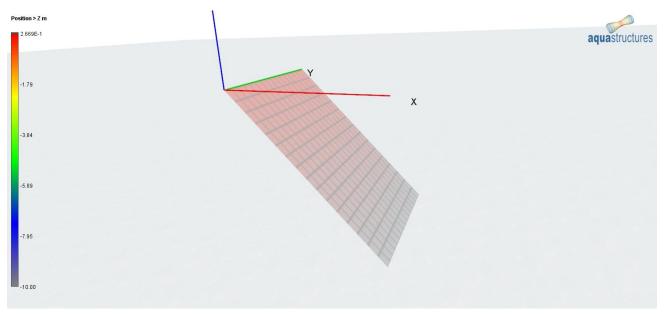
	TR-FOU-2222-5		aquastructures Page 4 of 15
Author: AB	Verified by: -	Revision: 1	Published: 20.05.2016

1 Introduction

For normal nets in AquaSim, the bending stiffness of the net elements are not included to the analysis. There is however the possibility to include the bending stiffness.

2 Theoretical formulation

Structural response of the elements is found by including the bending resistance of the nets. Each twine can then be modeled as a beam. Data can be put is manually or the AquaSim default data can be applied. The AquaSim default data are


For structural response the elements are built up exactly as flag shaped membrane elements. For this element type bending sti

3 Validation

3.1 Validation case 1 one element

The basic idea for this validation is to compare the net with bending stiffness to net without bending stiffness for cases where the results should be equal or very similar.

Figure 1 the net being 10 meters in the y- direction and stretching from the surface to 10 meter below at 10 meter in the x- direction.

3.1.1 Springs at all 4 corners

The first validation case for this one element validation case is applying springs to all corners, the applying a uniform current velocity as load. The results shown in Table 1 shows how results match as they should for this case.

			1 2222 5		
		TR-FOU	J-2222-5		aqua structures
					Page 5 of 15
Author:	AB	Veri	fied by: -	Revision: 1	Published: 20.05.2016
Table 1 Compariso	on of force	S			
No bending	Fx	Fy	F	z	
Spring 1	17	7173	5534	2673	
Spring 2		7173	5529	2673	
Spring 3		7177	5534	2669	
Spring 4		7177	5529	2669	
With bending					
Spring 1		7173	5534	2673	
Spring 2		7173	5529	2673	
Spring 3		7177	5534	2669	
Spring 4		7177	5529	2669	
Delta					
Spring 1		0	0	0	
Spring 2		0	0	0	
Spring 3		0	0	0	
Spring 4		0	0	0	

3.1.2 Free hanging net exposed to current and waves

In this case the net is fixed in the two nodes in the water line in the translatory degrees of freedom. Then current and waves are applied.

Figure 2 shows a comparison of the two net elements. As there should be, there is good correspondence.

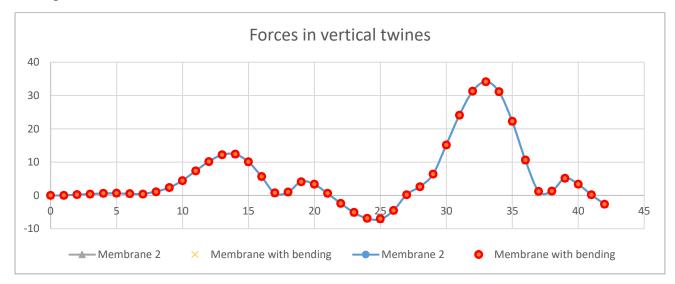
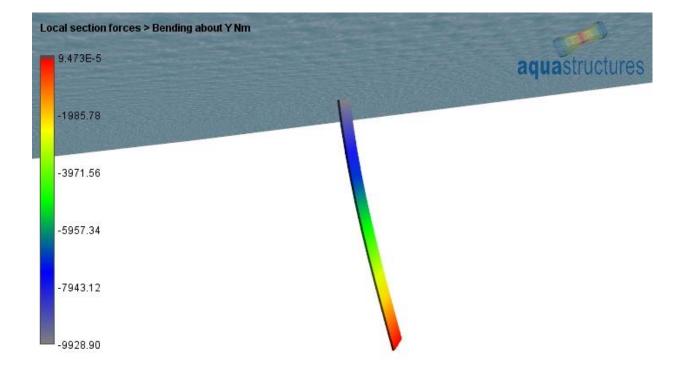



Figure 2 Blue line is membrane without bending stiffness and the red dots is the membrane with bending stiffness.

3.1.3 Comparison of bending stiffness,10 element model.

Figure 3 shows banding moment about the local z- axis for the beam model. Figure 4 shows bending moment in the vertical twines for the net with bending stiffness in the twines model. As seen from comparing Figure 3 and Figure 4, results compare well.

	TR-FOU-2222-5		aquastructures Page 6 of 15
Author: AB	Verified by: -	Revision: 1	Published: 20.05.2016

Figure 3 beam model, bending moment about local y-axis

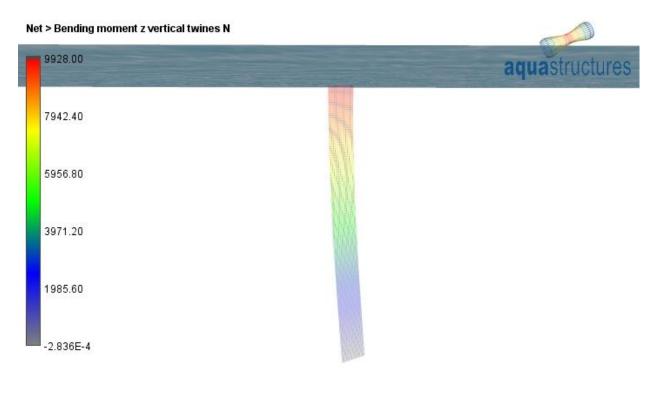
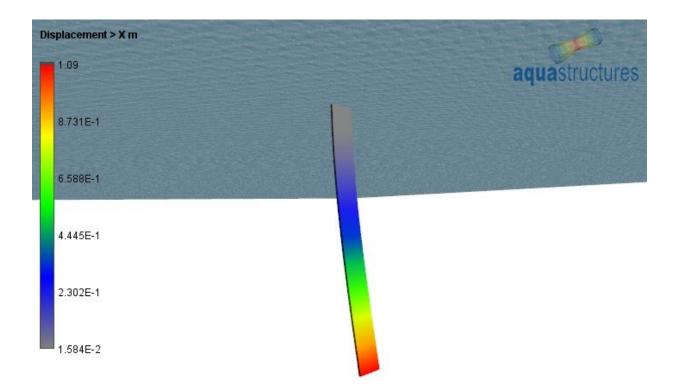



Figure 4 Net model, bending moment about local z-axis

	TR-FOU-2222-5		aquastructures Page 7 of 15
Author: AB	Verified by: -	Revision: 1	Published: 20.05.2016

Figure 5 shows displacement in the x-direction for the beam model and Figure 6 corresponding for the net model. As seen from comparing Figure 5 and Figure 6, results compare well.

Figure 5 Displacement in the x-direction for the beam model

Di	splacement > X m	
	1.09	aquastructures
	8.731E-1	
	6.588E-1	
	4.445E-1	
	2.301E-1	
	1.584E-2	

Figure 6 Displacement in the x-direction for the net model (net with bending stiffness)

	TR-FOU-2222-5		aquastructures Page 8 of 15
Author: AB	Verified by: -	Revision: 1	Published: 20.05.2016

3.1.4 Comparison of results for a typical fish farm cage

In this section forces are compared for accounting for bending stiffness or not

Consider the case seen in Figure 7

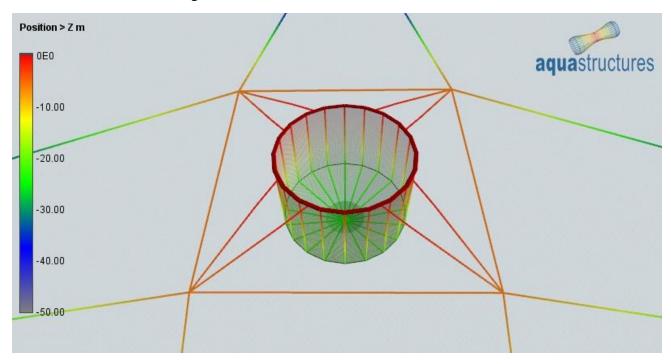


Figure 7 Analysis case for comparison

For the case in Figure 7, forces are compared at the position seen in Figure 8.

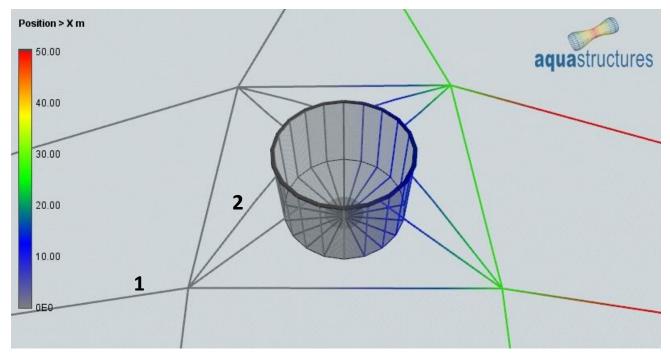


Figure 8 Locations where forces are compared

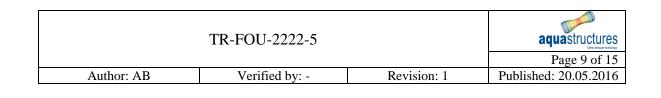
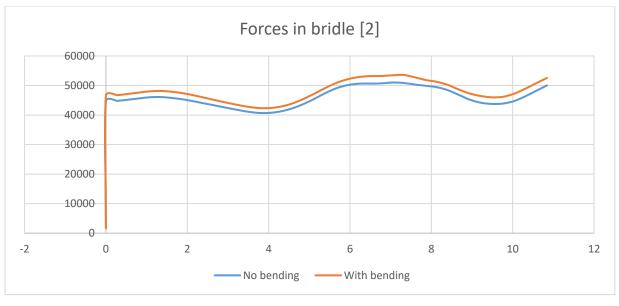



Figure 9

Figure 10

As seen by comparing Figure 9 and Figure 10 forces are higher when resistance to bending moment is accounted for. This is logical as resistance to bending moment means that the structure is stiffer so that

4 AquaSim implementaton

The physics of this element is handled as stated in Table 2.

	TR-FOU-2222-5		aquastructures
			Page 10 of 15
Author: AB	Verified by: -	Revision: 1	Published: 20.05.2016

Table 2 Handling of properties when bending moment

Property	How it is handled
Weight and bouyancy	Values are lumped to elements at 4 nodes in the same way as the net element without bending resistance.
Current	Current forces are lumped to 4 nodes in the same way as the net element without bending resistance.
Wave forces	Wave forces are lumped to 4 nodes in the same way as the net element without bending resistance.
Stiffness	Analogy can be given to beams in a pattern of the twines similar to the classic net element being seen as truss in a pattern similar to twines
Mass	Mass is lumped to 4 nodes in the same way as the net element without bending resistance.

The element has the number 11 as component number (type) as shown (highlighted in blue) in Figure 11.

3	versi	ion												
4	!Numbe	er of nod	es	:New M	odel									
1	!Beams	s/trusses	and mem	branes										
1	0	0	0	0	0	0	0	0	0	#Wave	s, #Irr	egular wa	ve indi	cator, #Dum
1	0	0	0	0	0	0	0	0	0	#Nr c	of Curre	ents, #Dum	my 9-17	
1	0	0	0	0	0	0	0	0	0	#Mate	rials +	some geo	m, #Lin	ebreaks, #D
0	0	0	0	0	0	0	0	0	0	#Cons	ervativ	ve node lo	ads, #R	ollers, #W
0	0	0	0	0	0	0	0	0	0	#Spri	.ngs, #L	ocal Node	s, #Pre	described d
0	0	0	0	0	0	0	0	0	0	#Drag	typeLoa	ds, #Wind	Loads,	#ImpulseLoa
0	0	0	0	0	0	0	0	0	0	#Diff	erent h	ydrodynam	ic load	s, #POI, #R
1 1.0E	9 7.8539	981633974	482E-7 5	.0E-5 5.	0E-5 0.01	0.01 0	.0 1025.0	0 1.5 0.0	0.0 13	0.0 0.0	0.0 0.	0 0.0 0.0	0.0 0.	0 1 0.0 0.0
1	10.0	0.0	-10.0	1	1	1	1	1	1					
2	10.0	10.0	-10.0	1	1	1	1	1	1					
3	0.0	0.0	0.0	000	11	1	1	1	1					
4	0.0	10.0	0.0	000	11	1	1	1	1					
1	11	1	1	2	4	3								
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.0	5.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	## Se	astate/C	urrent/	Wind para	meters	
-1.0	0	1	0.5	4.0	0.01	3	0	-100.0	1.0	0.0	## De	pth/Randn	um/DynP	arameters G
2	3000	40	20	1	0	0	## Init	tIncremer	nt, MaxI	teration	is, NumS	tepsWaveT	otal, N	umStepsWave
1	-1.0	-1.0	1.0	1.0										
0	0	0	0	0.0	0	0	0	0	1	0	0	0	0	0

Figure 11 Input file with one element

As seen from the top line of the file seen in Figure 11, the version in this case is 3. Using Aquasim solver version value less than 5 means only defaults values can be applied for the bending resistance values. These values are shown in

Define a local coordinate system where the local x- axis is from node 1 to node 2 and the local z-axis is from node 1 to 4 as shown in Figure 12.

	aquastructures		
Author: AB	Page 11 of 15 Published: 20.05.2016		
	Verified by: -	Revision: 1	
z 🕇			
X			

Figure 12 Local coordinate system

Table 3 shows default values for parameters for this type of elements.

Table 3 Default parameters element type 11

Input data	Abbreviation	Default
Elastic modulus horizontal twines	Ex	Emod
Elastic modulus vertical twines	Ez	Emod
Cross sectional area horizontal twines	Ax	Area
Cross sectional area vertical twines	Ау	Area
Shear modulus horizontal twines	Gx	Emod*0.4
Shear modulus vertical twines	Gy	Emod*0.4
Area moment of inertia horizontal twines*	lx1	Area2*π/64
Area moment of inertia horizontal twines*	lz1	Area2*π/64
Area moment of inertia vertical twines*	lx2	Area2*π/64
Area moment of inertia vertical twines*	lz2	Area2*π/64
Torsional resistance horizontal twines	lt1	Area2*π/32
Torsional resistance vertical twines	lt2	Area2*π/32

From Table 3 Emod is the elastic modulus in the type "2" membrane element and Area is the cross sectional area.

From inputfile version 5 or above all components have an input line that just beam and truss elements had in former versions. In version 5 and above the 2^{nd} component line (used for drag data to truss and beams). In this input line, the parameters in Table 3 can be given as input in this line at the positions as shown in Table 4.

	TR-FOU-2222-5		aquastructures
			Page 12 of 15
Author: AB	Verified by: -	Revision: 1	Published: 20.05.2016

Table 4 Input data to membrane with bending stiffness, components type 11.

#	Input data	Abbreviation	Default
Old	Elastic modulus horizontal twines	Ex	Emod
	2 Elastic modulus vertical twines	Ez	Emod
Old	Cross sectional area horizontal twines	Ax	Area
	3 Cross sectional area vertical twines	Ау	Area
	1 Shear modulus horizontal twines	Gx	Emod*0.4
	5 Shear modulus vertical twines	Gy	Emod*0.4
	Area moment of inertia horizontal twines*	lx1	Area2*π/64
	7 Area moment of inertia horizontal twines*	lz1	Area2*π/64
	Area moment of inertia vertical twines*	lx2	Area2*π/64
	Area moment of inertia vertical twines*	lz2	Area2*π/64
1) Torsional resistance horizontal twines	lt1	Area2*π/32
1	Torsional resistance vertical twines	lt2	Area2*π/32

5 Appendix, example input files

5.1 One element case

- 3 version
- 4 !Number of nodes :New Model
- 1 !Beams/trusses and membranes

1	0	0	0	0	0	0	0	0	0	#Waves, #Irregular wave
indi	cator, #	Dumm	y 1-8							
1	0	0	0	0	0	0	0	0	0	#Nr of Currents, #Dummy

9-17 1 0 0 0 0 0 0 0 0 0 0 0 #Materials + some geom,

#Linebreaks, #Dummy 18-25

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 % Springs, #Local Nodes, #Predescribed displacements, #Hinged springs, #Lineloads, #Valves, #Dummy 31-34

0 0 0 0 0 0 0 0 0 0 0 0 0 0 #DragtypeLoads, #WindLoads, #ImpulseLoads, #NonlinBend, #Dummy 35-40

	Autho	r: AB	aquastructures Page 13 of 15 Published: 20.05.2016							
	E9 7.85 .0 0.0 1			5.0 1	.5 0.0 0.0 13 0.0 0.0 0.0 0.0 0.0 0.0					
1	10.0	0.0	-10.0	1	1	1	1	1	1	
2	10.0	10.0	-10.0	1	1	1	1	1	1	
3	0.0	0.0	0.0	0001	1	1	1	1	1	
4	0.0	10.0	0.0	0001	1	1	1	1	1	
1	11	1	1	2	4	3				
0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0 0 0 #Masstype, Extra
2.0 parar	5.0 neters	0.0	1.0	0.0	0.0	0.0	0.0	0.0	##	Seastate/Current/Wind
-1.0 Depti	0 h/Randr	1 ium/Dy	0.5 nParam	4.0 eters G,	0.01 B,TH	3	0	-100.0	1.0	0.0 ##
2 Num	3000 StepsW	40 aveTota	20 al, Num	1 StepsWa	0 ave, Ti	0 me coi	## npressio		itIncı	rement, MaxIterations,
1	-1.0	-1.0	1.0	1.0						
0	0	0	0	0.0	0	0	0	0	1	0 0 0 0
Dvna	0 umic cor	0 ivergen	0 ce. Thre	0 eads Ex	0 tra	0	0	0	0	0 #Slamming,
Dyna		ivergen	, 11110		uu					
5.2 4	Ten el versi		case							
22	!Num	ber of 1	nodes	:New]	Model					
10	!Bear	ns/truss	es and r	nembrai	nes					
1 indic	0 ator, #D	0 Pummy	0 1-8	0	0	0	0	0	0	#Waves, #Irregular wave
1 9-17	0	0	0	0	0	0	0	0	0	#Nr of Currents, #Dummy
1 #Line	0 ebreaks,	0 #Dumi	0 my 18-2	0 5	0	0	0	0	0	#Materials + some geom,
2 #Rol	0 lers, #V	0 Vinch o	0 ut, #Ma	0 x numbe	0 er of ez	0 xtra wi	0 nch eler	0 nents, #V	0 Vincł	#Conservative node loads, n in, #Dummy 26-30

	Autho	or: AB	T		OU-2222- erified by: -		R	evision:	1	aquastructures Page 14 of 15 Published: 20.05.2016
0 #Pre	0 describe	0 ed displa	0 acement	0 s, #H	0 Iinged spr	0 ings, -	0 #Linelo	0 ads, #V	0 alves, ‡	#Springs, #Local Nodes, #Dummy 31-34
0 #Win	0 ndLoads	0 s, #Impt	0 ulseLoad	0 ls, #N	0 NonlinBer	0 nd, #D	0 Dummy 1	0 35-40	0	#DragtypeLoads,
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #Different hydrodynamic loads, #POI, #RAODisplacement, #Lift, #RAOLoads, #Drift, #HorDiff, #Dummy 41-44										
1 1.0E11 0.007853981633974483 5.0E-5 5.0E-5 1.0 1.0 0.0 1025.0 1.0 0.0 0.0 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.										
1	0.0	0.0	-10.0	1	1	1	1	1	1	
2	0.0	1.0	-10.0	1	1	1	1	1	1	
3	0.0	0.0	-9.0	1	1	1	1	1	1	
4	0.0	1.0	-9.0	1	1	1	1	1	1	
5	0.0	0.0	-8.0	1	1	1	1	1	1	
6	0.0	1.0	-8.0	1	1	1	1	1	1	
7	0.0	0.0	-7.0	1	1	1	1	1	1	
8	0.0	1.0	-7.0	1	1	1	1	1	1	
9	0.0	0.0	-6.0	1	1	1	1	1	1	
10	0.0	1.0	-6.0	1	1	1	1	1	1	
11	0.0	0.0	-5.0	1	1	1	1	1	1	
12	0.0	1.0	-5.0	1	1	1	1	1	1	
13	0.0	0.0	-4.0	1	1	1	1	1	1	
14	0.0	1.0	-4.0	1	1	1	1	1	1	
15	0.0	0.0	-3.0	1	1	1	1	1	1	
16	0.0	1.0	-3.0	1	1	1	1	1	1	
17	0.0	0.0	-2.0	1	1	1	1	1	1	
18	0.0	1.0	-2.0	1	1	1	1	1	1	
19	0.0	0.0	-1.0	1	1	1	1	1	1	
20	0.0	1.0	-1.0	1	1	1	1	1	1	
21	0.0	0.0	0.0	0	0	0	0	0	0	
22	0.0	1.0	0.0	0	0	0	0	0	0	

			aquastructures Page 15 of 15										
	Autho	or: AB		Veri	fied by: -	Tied by: - Revision: 1					ed: 20.05	.2016	
1	11	1	1	2	4	3							
2	11	1	3	4	6	5							
3	11	1	5	6	8	7							
4	11	1	7	8	10	9							
5	11	1	9	10	12	11							
6	11	1	11	12	14	13							
7	11	1	13	14	16	15							
8	11	1	15	16	18	17							
9	11	1	17	18	20	19							
10	11	1	19	20	22	21							
1 #Dur	1 nmy 32	500.0 , #Dumr		0.0 #Dumn	0.0 ny 34 #1	0.0 PointLe	0.0 pad 1	0	0	0	0	#Poi	ntload,
2 #Dur	2 nmy 32	500.0 , #Dumr		0.0 #Dumn	0.0 ny 34 #1	0.0 PointLe	0.0 pad 1	0	0	0	0	#Poi	ntload,
0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	#Ma	sstype,	Extra
1.0 paran	5.0 neters	0.0	0.0	0.0	0.0	0.0	0.0	0.0	##		Seastat	e/Curre	nt/Wind
-1.0 Dept	0 h/Randr	1 num/Dyr	0.5 1Parar	4.0 neters G	1.0 ,B,TH	3	0	-100.0	1.0	0.0	##		
5	3000		20	1	0	0	##		itInci	rement,		MaxIt	erations,
Num	StepsW	aveTota	l, Nun	nStepsW	/ave, Ti	me cor	npressio	on					
1	-1.0	-1.0	1.0	1.0									
0	0	0	0	0.0	0	0	0	0	1	0	0	0	0
Dyna	0 amic cor	0 nvergend	0 ce, Thi	0 reads, Ez	0 xtra	0	0	0	0	0	#Sla	mming,	