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1. INTRODUCTION 

Method to find load to structure (RAO, Hydrodynamic theory, Morison)  

2. LOADS AND RESPONSE TO LARGE MASS FLOATING OBJECTS  

A typical barge is shown in Figure 1.  

 

Figure 1 Floating barge with spread mooring  

 

Analyzing barges and other floating objects there are several response aspects of interest. The 

floating object is exposed to loads from the sea in terms of waves and current. In air there is the 

wind also leading to forces. The mooring is keeping the floating object in place in the horizontal 

plane as shown in Figure 2. In the vertical plane, it is mainly the water plane stiffness holding the 

barge in place as seen in Figure 3.   
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Figure 2 Moored barge seen from above 

 

 

 

Figure 3 Moored barge seen from side 

 

2.1. Hydrostatic forces acting on a body in water 

Consider an object floating in water as shown in Figure 4. 
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Figure 4 Rectangular vessel seen in the y-z plane.  

 

2.1.1. Buoyancy  

The forces acting from the water to the structure is the integral of the fluid pressure around the 

object. Define an orthonormal coordinate system where the x- axis is along the object in the 

horizontal plane, the z- axis is upwards with origin at the mean water line as shown in Figure 3. 

Hydrostatic pressure increase downwards in a fluid and the hydrostatic pressure at a given point 

in a fluid (see e.g. http://en.wikipedia.org/wiki/Fluid_statics) can be found as: 

 

atm
pgzp +−=   

Equation 1 

Where  is the density of water, g is gravity, z is the vertical location (origin at free surface and 

axis pointing upwards) patm is the atmospheric pressure in air at the free surface.  

 

Assume the fluid is non-viscous. Then a force originating by fluid pressure will be directed 

normal to the surface. Introducing this to the case seen in Figure 4 it is seen that the net 

horizontal force is 0 due to symmetry and the net vertical force is 

ghblF =  

Equation 2 

 

Where F is positive upwards and l is the length out of the plane seen in Figure 4 and h and b are 

as defined in the figure. Equation 1 can be rewritten to  

gVF =  

Equation 3 

Where V is the submerged volume. As seen this is in accordance with Archimedes principle (  

http://en.wikipedia.org/wiki/Archimedes%27_principle). 

 

As seen from Figure 4 moving the body downwards will give a higher submerged volume and 

hence more buoyancy, pushing the vessel down a distance -dz means the force upwards will be  

 

b

h

z
y

Water line
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bldzhgF )( +=   

Equation 4 

 

Meaning the extra force upwards is  

 

gbldzF =  

Equation 5 

 

2.1.2. Water plane stiffness 

Using the definition of spring stiffness according to Hookes law, F = kdz 

(http://en.wikipedia.org/wiki/Hooke%27s_law ) gives the “water plane stiffness” , kw 

 

 

 

Equation 6 

where Aw is the water plane area which is the area of the water line which is penetrated by the 

floating object.  

 

2.1.3. Eigenperiod heave 

Neglecting stiffness and mass from moorings, the eigenperiod for a floating body with a water 

plane area is   

w
gAk

T


 a

e

mm
  2

m
  2 

+
==  

Equation 7 

Where ma is the added mass in heave.  

 

2.1.4. Roll motion and stability 

Doing a similar consideration for roll motion, which is rotation about the x- axis finds that 

restoring moment depends on the distance between the centre of buoyancy, B and how the centre 

of buoyancy moves when the floating object is rotated. This is shown in Figure 5.   

 

ww
gAgblk  ==

http://en.wikipedia.org/wiki/Hooke%27s_law
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Figure 5 

Analogue to water plane stiffness relative to z- motion there is a rotation stiffness for roll 

depending on GM where GM is defined at the vertical distance from the floating objects centre 

of gravity to the Metacentric height where  

 

 

V

I
B

V

x+=+=
12

lb
  B  M

3

 

Equation 8 

where Ix is the area moment of inertia of the water plane area about the x- axis.  

 

2.1.5. Eigenperiod roll 

The eigenperiod, Te is  

)(

mVr
  2

m
  2 a

2

e
GMgVk

T





+
==  

Equation 9 

Where r is the average mass radius of inertia (http://en.wikipedia.org/wiki/Radius_of_gyration) 

Often the added mass inertia in roll may be smaller than the mass inertia of the vessel itself. 

Neglecting the added mass, the natural period is  

 

GM

r

GMg
T

64.0

)(

r
  2 

2

e
==   

Equation 10 

 

 

 

http://en.wikipedia.org/wiki/Radius_of_gyration
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Hydrostatically, the vessel is in equilibrium in the horizontal direction since the pressure acting 

on both sides of the vessel is similar. A moored vessel will find horizontal equilibrium where the 

horizontal components of the mooring forces cancel out each other.  

 

Forces downwards by moorings leads to a larger submerged volume of the vessel giving an 

upward force equalizing the downward force by the moorings. In this case, the total buoyancy 

from the submerged volume equals the weight of the vessel plus the downward force of the 

moorings.  

 

2.1.6. Pitch and yaw motions 

In AquaSim pitch and yaw rotations are treated by the FE method of the program. 

 

2.1.7. Input for calculation of hydrostatic properties in AquaSim 

 

Table 1 shows the input parameters given to AquaSim for calculation of hydrostatic properties. 

Table 2 shows the hydrostatic parameters derived by calculation within AquaSim. Combined 

with mass and added mass one also have parameters for calculation of eigenperiods.   

 

Table 1 Input parameters 

Parameter Description 

Hull shape A given number of points describing the hull 

COG Vertical centre of gravity structure, mass centre 

Water line  Vertical location of water line 

Mass radius Mass radius of gyration  

 

 

Table 2 Hydrostatic parameters calculated by AquaSim 

Parameter Description 

COB Vertical centre of buoyancy 

Aw, kAw Water plane area, water plane stiffness 

Iw Area moment of inertia, roll water plane 

CM Metacentric height 

 

2.2. Hydrodynamic forces acting on a body in water 

Waves are a time dependent change in the water elevation and also the pressure in the fluid. The 

pressure below the water surface is in this case normally parted to the static part and the dynamic 

part of the pressure where the dynamic part of the pressure is a perturbation of the average 

hydrostatic pressure.  
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2.2.1. Wave theory 

Let the wave elevation be described by Airy waves 

(http://en.wikipedia.org/wiki/Airy_wave_theory). The water particles will then move in a 

circular pattern at infinite depth and an elliptic pattern in finite depth as shown in Figure 6. 

 

 

Figure 6 Velocity of water particles under propagating airy waves 

Mathematically wave elevation according to Airy wave theory can be expressed as  

 

)sin( kxta −=   

Equation 11 

For a wave propagating along the positive x- axis.  

 

Waves leads to a time dependent pressure component  

)sin( kxtegp
kz

d
−=   

Equation 12 

where  is the density of the fluid. For infinite water depth and   

)sin(
)cosh(

)cosh(
kxt

kh

hz
gp

d
−

+
=   

Equation 13 

for finite water depth. k is the wave number gk /
2

= for infinite depth and gkhk /)tanh(
2

=  

for finite depth. Figure 7 shows pressure under a wave crest and how dynamic pressure and static 

pressure distributes under a wave crest.  

 

http://en.wikipedia.org/wiki/Airy_wave_theory
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Figure 7 Sea pressure under waves 

 

As seen from Figure 7 the felt total pressure is the static pressure plus dynamic pressure and can 

be formulated as: 

atmd
pgzpp +−=   

Equation 14 

 

Simplified this can be seen as the hydrostatic pressure under the wave crest, but with the effect 

of the wave decaying with depth. In the area above the mean water line and under the wave crest, 

the pressure is calculated simply as the hydrostatic pressure under the instant wave crest. This 

means that the dy. Figure 8 shows the pressure distribution under a wave through.  

 

z

Dynamic pressure

Static pressure Total pressure
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Figure 8 Pressure under wave through 

 

Consider a body submerged in water under waves  

 

 

Figure 9 Submerged body 
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2.2.2. Froude Krylov force  

Forces from water to a submerged body will be integral of the pressure around the body. As the 

static pressure is constant we may integrate the pressure to find the force on the body. We start 

out with integrating the pressure over the surface, then the Froude Krylov force, FFK is  

 

dsnpF
Sw

FK



−=  

Equation 15 

Where p is the pressure introduced by the undisturbed wave field.  

 

2.2.3. Diffraction force 

The pressure under the waves is associated with fluid velocity. This means that in order to keep 

its position, the body in water will introduce a change in the fluid particle motion on and around 

the body. For a fixed body, the fluid velocity must be zero normal fluid velocity to the body as 

shown in Figure 10. The forces caused by the pressure of the undisturbed incident waves are 

called the Froude Krylov forces. The presence of the body is disturbing the incident waves.  The 

Forces caused by the body´s disturbance of the wave field is called “diffraction forces” and is 

denoted FD. The normal velocity to the body for the diffracted wave field is at any time opposite 

to the velocity caused by the incident wave.  

 

Figure 10 Velocity field around a submerged body 

 

 

dsnpF
DSw

D



−=  

Equation 16 

 

The total force to the body is then  

b

h

z
x

+ = 
0
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DFK
FFF


+=  

Equation 17 

 

2.2.4. Strip theory for calculation of hydrodynamic forces 

In a general case it can be difficult to find the wave field disturbance and then the diffraction 

force. AquaSim offer one integral possibility to derive this by “strip theory” (Fathi 1996). Strip 

theory divides the object to strips and solves a numerical problem to find the diffraction force. 

For an object at the free surface segments are put to both the object and the free surface, and the 

relation that the normal velocity to each body surface strip must be opposite the velocity of the 

waves. At the free surface the normal free surface condition applies. This is shown in Figure 11.  

  

 

 

Figure 11 Segments for the “sink source” numerical calculation of diffraction.  

 

Physically the forces to the object are associatted with the fact that part of the incident wave is 

reflected such that there will be a lower wave on the lee side of the object called the transmitted 

wave and a wave on the weather side in the opposite direction called the refle 

 

Note that the free surface condition has been linearized to the mean free surface which is 

consistent with linear wave theory. There are however effects which is not picked up by this 

approach where the normal most important case for large volume floating objects is wave drift.  

 

2.2.5. Viscous forces 

Viscous forces caused by vortices are not accounted for by strip theory of other type of “sink 

source” theory as it assumes an invicid flow. This can be added to AquaSim by coefficients 

similar to the coefficients for objects where the Morison load formulation is applied. See 

Aquastructures (2013) for details.   

 

2.2.6. Cases with long waves relative to structure cross section 

With only the dynamic part of the pressure accounted for, Equation 15 can be written as 

 

Betingelse på flyter

Betingelse på overflate

2D object divided by strips

Strips on water surface
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dsnkxtegdsnpF
Sw

kz

Sw
FK



 −=−= )sin(   

Equation 18 

Then by using the Gauss divergence theorem (http://en.wikipedia.org/wiki/Divergence_theorem) 

and using force in the x- direction directions as example on may rewrite Equation 18 to  

 

dVkxtegkxteg
dx

d
dVn

dx

dp
dsnpF

kz

V

kz

V

xx
Sw

FKx
))sin()sin(( −−−=−=−=  


 

Equation 19 

And further 

 

dVkxtegkxtegkdVn
dx

dp
dsnpF

kz

V

kz

V

xx
Sw

FKx
))sin()cos( −−=−=−=  


 

Equation 20 

applying gk /
2

= gives further  

dVkxtegkxtedVn
dx

dp
dsnpF

kz

V

kz

V

xx
Sw

FKx
))sin()cos(

2
−−=−=−=  


 

Equation 21 

which can be expressed as  

dVadVn
dx

dp
dsnpF

V

x

V

xx
Sw

FKx  =−=−= 


 

Equation 22 

where ax is the acceleration of the fluid in the submerged part of the volume. For objects where 

the wave length is large compared to length of structure, Equation 22 can be simplified as  

xFKx
VaF =  

Equation 23 

which is the Froude Krylov part of Morison´s equation. ax is taken at the center of the object. 

Catenary moored large volume structures is normally not so large that this is the case such that 

the full integral should be calculated.  

 

2.2.7. Morisons equation 

Fluid acceleration is the derivative of fluid velocity. Denote fluid velocity, u and its derivative u

whereas the velocity of the structure is denoted v with its derivative v . Then Morisons equation 

reads:   

vuvuACvVCuVCuVF
daa

−−+−+= )(
2

1
   

Equation 24 

http://en.wikipedia.org/wiki/Divergence_theorem
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Where Ca is the added mass coefficient and Cd is the drag coefficients which are parameters set 

empirically or analytically. Description can be seen at 

http://en.wikipedia.org/wiki/Morison%27s_equation The terms in Equation 24 are:  

 

uV   is the Froude Kriloff force. This term is added not only in the z- direction, for also in the 

horizontal plane.  

uVC
a

  is the diffraction force.  

vVC
a

  is the added mass.  

vuvuAC
d

−− )(
2

1
  is the drag force.  

V is the submerged volume and A is the area fronting the fluid motion.  

2.3. Added mass and damping 

In the previous section forces applying to a (partly) submerged body being still was introduced. 

This section described the case where the body moves. For a moving body in water, the 

boundary value problem must solved where the velocity normal to the vessel is not 0 but the 

velocity of the object.  

 

 

Figure 12 

 

From this boundary value problem, forces are found which are proportional with acceleration 

and velocity of the object. Forces proportional with acceleration is called “Added mass” and 

proportional with velocity is called “damping”. Hydrodynamic damping is associated with waves 

moving outwards from the object called radiating waves.  

The solution for added mass and damping will depend on the wave period.  

2.4. Wave drift forces 

Wave drift forces are constant (in regular waves) or slowly varying forces (irregular seas) 

proportional to the square of the waves reflected by a vessel. This follows Maruos formulae (See 

e.g. Faltinsen 1990). Consider a 2 dimensional case. The average drift force over a time period is 

assumed being according to Maruos formulae:  

Betingelse på flyter

Betingelse på overflate

Fluid velocity normal to segment 
= normal velocity of segment

Vx
Vz

http://en.wikipedia.org/wiki/Morison%27s_equation
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2

2
2

r
A

g
F


=  

Equation 25 

 

Where 2F is the second order force averaged over a wave period.  is the density of water. 

g is the gravity constant. Ar is the amplitude of the reflected wave. Using this information, F2 

can be calculated as: 
2

)(2 tgAF
r

=  

Equation 26 

It is seen that Equation 26 will give the same average force as Equation 25.  F2 will always act 

normal to the hull in in the opposite direction of the reflected waves. The reflected waves are the 

reflected wave calculated by the strip theory or other numerical method accounting for waves 

originating both from diffraction and radiation. In irregular waves, the reflected wave is 

calculated for each period in the spectrum. In this calculation the reflected wave is a combined 

wave from diffraction and radiation.  

Equation 26 has an advantage over Equation 25 since it will work fine for irregular seas as it 

uses the instantaneous wave elevation at the ship side. Hence the slow drift time variation of this 

load term is automatically accounted for. Equation 26 has also a load component in sum 

frequency. This component is correct in magnitude but not formally correct in phase.     

A more detailed description of this is given in Aquastructures (2012).  

 

2.5. End effects, 3D effects 

Strip theory accounts for variation over the hull in the x- direction. However this variation 

should be small compared to the distance along the x- line. For a ship shapes structure as shown 

in Figure 31 this is a very good assumption. However for barges with a square shape, strip theory 

not account for the ends which in such cases is a significant part of the hull.  

 

Normally the ends are modeled with transverse elements applying the Morison equation to them 

even though they do not fulfill the relation that wave length should be large compared to object. 

As long as the waves move transverse to the vessel (in the y- direction) this is fine. However for 

when the waves starts to vary with the x- direction this is no longer valid. Hence there is a 

possibility for using strip theory in two directions simultaneously in AquaSim. The forces in one 

of the directions are calculated by “2D” strip theory which means only horizontal forces are 

accounted for. This means it can be used in combination with the usual strip theory without 

doubling up vertical forces.  

 

Using 2D strip theory in AquaSim, only forces in plane are accounted for whereas vertical forces 

and added mass is disregarded. This may be applied to the ends and combined with “normal” 

srip theory in the other direction then a quasi “3D” solution is established. The wave loads will 

be a bit higher than with full 3D since the corner is not accounted for. That is to the conservative 

side.    
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3. CASE STUDIES TO IMPORTANT LOAD RESPONSE EFFECTS 

This section describes some important response modes for barges and how analysis may be 

carried out to find if moorings and structure can cope with the load-response.  

3.1. Finding natural periods roll and heave 
Analysing a barge or any other vessel it is of interest to know the natural periods of the barge.    

3.2. High loads in moorings due to impact loads from time varying 

stiffness of moorings 

A typically occurring load condition for moored system is that the system moves and moorings 

change stiffness. This may lead to large accelerations and forces in the system including the 

moorings. Due to the ability to handle large nonlinear effects, AquaSim may be used to 

investigate the occurrence and magnitude of such load-response. This effect occurs typically for 

any kind of moored structure but is mostly predominant for moored structures with high mass 

such as barges, ship shaped structures and offshore platforms. It also typically occurs to buoys 

and similar surface penetrating floats. 

3.2.1. Simplified case for validation and comparison to analytic formulae 

In order to demonstrate the effect and validate the AquaSim analysis capabilities, a case study 

with a float connected to a fixed point by a rope as shown in Figure 13 has been established. 

Consider the particular time instant when the distance rope goes from slack (seen in Figure 14) 

to straight as seen in Figure 13.  

 

Figure 13 Float attached to bottom with rope 

k = EA/L

m = mf + ma

L
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In Figure 13, k is the (spring) stiffness of the rope, E is the Young modulus, A is the (nominal) 

cross sectional area of the rope and L is the rope length. m = mf + ma is the mass of the float 

where mf is the mass of the float itself and ma is the added mass which is the hydrodynamic load 

proportional to the float acceleration. Assume that the mass and added mass of the rope itself is 

much lower than for the float and hence can be neglected.  

 

 

Figure 14 Float with slack rope 

 

Consider a time instant when the float rope has become slack as seen in Figure 14. Assume that 

the float moves upwards with the wave elevation. At some point, the distance rope goes from 

slack to straight as seen in Figure 13. As a simplification one can assume that the vertical 

stiffness of the rope is 0 when the rope is slack and that it is EA/L when it gets stiff and the 

condition in Figure 13 applies. At that moment, an impact load is introduced to the float.  

Assume that the response from this impact load can be described with the classic impulse 

response function:  

0=+ kzzm   

Equation 27 

 

where z is the vertical displacement. As a simplification a one dimensional system where the 

motion in this case is assumed to be vertical in direction parallel with the distance rope is 

considered. Define the coordinate system such that vertical motion z = 0 when t = 0 as shown in 

Figure 15. 
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Figure 15 Initial value condition at moment rope goes stiff 

 

Neglect damping in the system (as has been done in Equation 27). This means the system can be 

solved by applying the classic impulse response equation solution for the motion: 

)sin()( tatz =  

Equation 28 

 

where ω2 = k/m and a is the amplitude of the response. k is the stiffness of the system caused by 

the rope holding the float back like a spring.  k = EA/L + kaw where kaw is the water plane 

stiffness = gaw where aw is the water plane area. This is a linear solution where the stiffness and 

mass is assumed to be time invariant. The velocity is the time derivative of the displacement: 

)cos()( tatz =  

Equation 29 

 

where )(tz  is the vertical velocity of the system. In our case we have an initial velocity v0 which 

is the velocity at the initial time (t = 0 (exactly when the ropes gets stiff). Assume that the 

velocity of the float follows the vertical velocity of the wave elevation as the wave is built up. 

Then v0 can be found from the velocity of the vertical wave elevation at the moment the rope 

snap. Assume a regular wave with amplitude . The wave elevation can be expressed as  

)sin( t
e

 =  

Equation 30 

 

where ωe is the wave frequency of encounter, this frequency has nothing to do with the 

eigenfrequency of the rope and float. Applying Equation 28 to time step t= 0 we get 

)cos(
00 =

=
t

etev   

Equation 31 

 

z
m = mf + ma

Z = 0 k (z-direction) = EA/L

Vz (vertical velocity) 
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Now assume that the float rope snaps when v0 is at its max possible value, v0 = ωe: In the 

present model the geometry is such that the rope will be stiff at approximately 0= which is the 

time the vertical velocity v0 is at its maximum.  

  

 aazev ==== )0cos()0()0(   

Equation 32 

  

This means the amplitude, a is found as 



)0(v
a =  

Equation 33 

 

Now the relation between eigenperiod and mass and stiffness is introduced (ω2 = k/m) to 

Equation 33: 

kmvkmv
mk

vv
a /)0()/)(0(

)/(

)0()0( )2/1(

2/1
====


 

Equation 34 

 

This means that an impact as described above will introduce a harmonic impact response with 

amplitude as given in Equation 34.  

From the maximum response amplitude, the maximum force can be derived as  

 

mkvkmkvkaF )0(/)0(
max

===  

Equation 35 

 

This means the maximum force is proportional to the initial velocity and the square root of the 

mass and stiffness. From Equation 31 it is seen that the initial velocity is proportional to the 

wave amplitude  and the wave frequency of encounter, e. Introducing v0 = ωe to Equation 

35 Fmax can be expressed as 

mkeF =
max

 

Equation 36 

Assuming the stiffness of the rope is so much larger than the water plane stiffness, the following 

equation can be derived: 

LmEAeF /
max

=  

Equation 37 

 

Consider a case with parameters shown in Table 3.  
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Table 3 Main data for system and analysis 

Float data  

Float length [m] 5.4 

Float volume [l] 5132 

Float circular diameter [m] 1.1 

Float weight [kg] 2907 

Rope data  

Length  [m] 10 

Cross sectional area [mm2] 1000 

E-modulus [Mpa] 10000 

Environment data  

Wave period [s] 6 

Current velocity n[m/s] 1 

Added mass [kg] 4737 

 

A model has been established in AquaSim for the case presented in Table 3. The model is shown 

in Figure 16. 

 

 
Figure 16 Analysis model, impact load test case 

 

In the analysis waves and current is from the left to the right along the positive x- direction as 

shown in Figure 17. 
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Figure 17 Analysis model, wave and current direction is along positive x- axis.  

 

Analysis has been carried out with varying wave amplitudes and compared to Equation 36. This 

is shown in Figure 18. In this figure, the labels mean: 

 

• Analytic formulae: Max load calculated from input from Equation 36. 

• Peak load AquaSim 1: Max load calculated with AquaSim with the analysis model taking 

in and out of water into account. 

• Peak load AquaSim 2: Max load calculated with AquaSim with the analysis model not 

taking in and out of water into account. 

• Analytic formulae EA/L: Max load calculated from input from Equation 37 neglecting 

the water plane stiffness. For this case the water plane stiffness is 5.6% of the total 

stiffness. 
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Figure 18 Maximum axial load in rope 

 

As seen from Figure 18, the results by Equation 36 and the AquaSim 2 model shows very good 

correspondence for all wave heights. Figure 19, Figure 20 and Figure 21 shows how the impact 

load strikes the rope as the float is moved from slack rope to the rope getting stiff.   

 

 
Figure 19 Float when rope is slack. There are no forces in the rope 
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Figure 20 Forces commencing in rope as float is moved upwards by wave motion  

 

 
Figure 21 Impact load to rope as the float has been moved so much upwards that the rope 

gets stiff 
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The time series response for the axial force in the rope is in the AquaSim analysis is shown in 

Figure 22 and Figure 23. 

 
Figure 22 Time series for the AquaSim analysis of the axial force 

 

 
Figure 23 Excerpt of time series for the AquaSim analysis of the axial force 

 

As seen from Figure 22 and Figure 23 the load is at 0 and then increase sharply due to the rope 

going from slack to stiff. As seen from the figures, a harmonic response is then decaying over 

time. As seen from Table 4 the natural period of a swinging system with mass and added mass of 

the float and stiffness of the rope is approximately 0.53 s.  

 

Table 4 Key data for the natural period of the rope 

Name Abbreviation Value 

Length L 10 

Youngs module E 1E+10 

Cross sectional area A 0.001 

Stiffness  EA/L k 1000000 
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Water plane stiffness kw 59728 

Total stiffness ktot 1059728 

Total mass m 7644 

omega    11.77 

Period s 0.53 

 

The natural period of 0.53 seconds corresponds very well to the response seen in Figure 23 apart 

from the first succeeding cycles where the time between succeeding peaks are longer. That is 

plausible as when inspecting Figure 23 the load gets to 0 between the first and the second 

response cycle after the impact. This is because the response amplitude is so large the rope gets 

slack. In that case the stiffness decreases and the natural period increase. With only water plane 

stiffness, the natural period is 2.25 sec.  

This analysis case shows that AquaSim manage to calculate the peak loads occurring in mooring 

lines as they goes from slack to stiff. This is an important design criteria for a wide range of 

moored structures and equipment.  

 

3.2.2. Barge example 

Inspecting Equation 35 is seen that the peak force in the mooring line is proportional to the 

velocity of the floating mass at the time the mooring line goes from slack to stiff. It is also 

proportional to the square root of the mass and the stiffness.  

Consider moored barge as shown in Figure 1. The mooring system of this barge is a typical 

mooring system with ropes with chains at each ends. To the bottom chains are normally used to 

avoid chafing when varying environmental conditions leads to varying parts of the mooring line 

that lies on the seabed. The basic idea is to avoid rope connection to the sea bed. Close to the 

vessel chains are normally also used. Using weights on a mooring line also means changing the 

moorings stiffness properties. It can be used to make the mooring go more softly from a slack 

condition to a stiff condition. How the system responds as one mooring goes from slack to stiff is 

shown in Figure 24 - Figure 27. 

 

Figure 24 Waves loads acting on barge. Loads in mooring lines are indicated by colour 
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Figure 25 Mooring line loads 0.64 seconds later than Figure 24 

  

 

Figure 26 Mooring line loads 0.64 seconds later than Figure 25 
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Figure 27 Mooring line loads 0.64 seconds later than Figure 26 

 

Figure 24 - Figure 27 shows how one of the mooring lines gets a peak load when the mooring 

line goes from slack to stiff. This happens in oblique seas.  

 

The load effect seen in Figure 24 - Figure 27 is normally the most important load effect for the 

design of a mooring system for barges such as seen in these figures. With respect to loading it is 

normally the highest wave that causes this response. Note that this is valid for steep waves. For 

swell, the load will normally be smaller as the barge velocity is smaller.  

 

Although the highest shock load response happens for the largest wave it is important to include 

also other load contributors such as currents, wave drift and wind. It is normally accurate enough 

to include these other effects by a constant load. Wave drift may introduce a separate quasi 

resonant motion. This is considered in a separate section of this report.  

 

The shock load effect considered in this section is always accounted for by running a time 

domain analysis in AquaSim. It is however of large importance to run high enough density on 

time steps to cover the peak load. It is also harder to find convergence at such load peaks due to 

the nonlinear characteristics of the load response.  

 

This response mode can sometimes be indicated in AquaSim by seeing non-convergence. Then 

more analysis should be run with fines time steps to find the finer characteristics of the response.  

 

3.3. Wave drift forces and response 
In AquaSim it can be chosen to account for wave drift forces. 

 

3.3.1. Case study in Aquastructures (2012) for validation 

Figure 28 shows a case study analysed with drift and reported in Aquastructures (2012). 
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Figure 28 Data used for case study where data are compared to data using the reflected 

wave asymptotic results. The depth below the water of the beam is 10 meters and the width 

of the beam is 1 meter. 

 

 

As seen from Figure 28 the structure is mounted like a cantilever beam. The resulting horizontal 

force in the y- direction is shown in Figure 29  

 

 

 

Figure 29 Response from wave with wave amplitude 5 meter and wave period 4 seconds.  

 

From Figure 29 it can be seen that the drift force calculation in AquaSim compares well with 

analytical calculation. It is also seen how the drift force is applied in time by calculating the 

square of the reflected wave at each time-step. This means the time dependence of the wave drift 

force is accounted for in irregular sea. As seen from Figure 29 there is also a sum-frequency 

component in the drift force calculation. In order to have this correct a more refined approach 
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should be established for this load component. As it is now, it is however very fine to detect 

possible resonance effects on sum frequencies.   

 

3.3.2. Slow horizontal motion in irregular seas 
In irregular seas, the wave drift force varies with the envelope 

(http://en.wikipedia.org/wiki/Envelope_%28waves%29) of the reflected wave where both the 

upper and lower envelope in a general case is seen in Figure 30.  

  

 
Figure 30 Upper and lower envelope of a time series. 

 

This envelope effect could be of importance if the mass of the floating object and the stiffness of 

the mooring system is such that the natural period of the system coincides with the natural period 

of the envelope.  

 

The stiffness of the mooring system is in general nonlinear. Hence there is no single value 

natural period. In order to find horizontal stiffness of mooring system one should apply static 

loads to derive displacement to figure out the stiffness as the derivative of the change in load to 

the change in displacement.  

  

3.3.3. Combination wave drift and current 

The current velocity is accounted for by formulae 5.22 in Faltinsen (1970) as 

)1(
22

g

UCos
FF


+=  

Equation 38 

F2 is the drift force as outlined in Equation 25. As seen from Equation 38 current parallel to the 

direction of the waves increase the drift force. Equation 38 is implemented to AquaSim.  

3.3.4. Direction of drift forces to sections 

The formulation used in strip theory assumes implicit that the angle  seen in Figure 31 is small. 

When calculating drift forces the angle  if found and accounted for when the drift force and the 

direction of the drift force is derived by  

http://en.wikipedia.org/wiki/Envelope_%28waves%29
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In case waves are not perpendicular to the “upstream” line where the vessel side intercepts the 

water, the drift force is corrected by 

)(sin
2

=
c

Fac  

Equation 39 

where  is the angle between the incident wave and the vessel water intersection line. , is the 

angle between the normal of the vessel side and the wave direction as shown in Figure 31. 

 
Figure 31 

 

3.3.5. Analysis case applying drift loads in AquaSim 
 

An Aquasim analysis model of a barge as shown in Figure 32 has been established 

 
Figure 32 barge seen in regular waves 

 

This system is seen in Figure 33. 
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x



Wave direction 
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Figure 33 Barge with springs at ends 

 

The particulars of the system are given in Table 5.  

 

Table 5 Main particulars for barge 

Parameter Value 

Length [m] 10.0 

Width [m] 4 

Depth [m] 4 

Deplacement [m2] 160 

Weight [kg] 164000 

Spring stiffness total [N/m] 5000 

 

More relevant data is given in Table 6. 

 

Table 6 Data for barge 

System data parameter Value 

Mass [kg] 164000 

Horizontal added mass at analysed wave period [kg] 23660 

Mass total [kg] 187660 

Spring stiffness [N/m] 5000 

Eigenperiod [s] 38.49 

Wave period [s] 3.00 

 

As see from Table 6 the wave period is short compared to the moulded depth of the vessel. This 

means on can assume that most of the incident wave is reflected.  

 

 

yMass + added mass

Wave in y-direction

x

Springs at nodes
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Table 7 Analytic calculation of displacement from drift force 

Parameter Value 

Amplitude incident wave [m] 1.00 

Amplitude reflected wave  0.98 

F2 per meter [N/m] 4848.26 

F2 total [N] 48482.59 

Displacement by F2 [m] 9.70 

 

Figure 34 shows response calculated by AquaSim for a regular wave with period 3 sec. As seen 

the average drift is between 9.5 and 10 meters which is good correspondence with the analytic 

average value in Table 7. 

 

 
Figure 34 Response in regular waves. Displacement y- [m]. Length of time series is 13.125 

minutes.  

 

Figure 35 shows a time instant in analysis of an irregular sea and Figure 36 shows the time series 

of the displacement.  
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Figure 35 Irregular long crested waves. Jonswap spectrum  = 3.3.  

 

 

 
Figure 36 Response in irregular waves. Displacement y- direction. Length of time series is 

13.125 minutes.  

  

As seen by comparing Figure 36 to Figure 34 the maximum drift is much lower in the case with 

the irregular seas. The maximum displacement is almost 4 times larger in the case of the design 

wave. This is plausible. The variance in a spectrum is  

 

2

0

2

16

1
)(

s
HdS == 



  

Equation 40 
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====  

Equation 41 

 

By comparing the variance it is seen that the variance of the wave train is approximately 7 times 

larger when analysing with a design wave than for irregular seas. As the drift force is 

proportional to the variance, the response to drift force can be expected to be 7 times larger than 

a realistic maximum drift force in cases where the mass of the system is such that several wave 

cycles are necessary to obtain the full amplitude for the response. This is the case in this 

example.  

 

As seen by Figure 36 to Figure 34 the average response in the case of irregular seas are in this 

case larger than 1/7 of the response in a regular sea with wave height = 1.9 * Hs. It should be 

noted that the fact that AquaSim uses the instant position of coordinates to obtain the 

hydrodynamic response instead of the mean position. This will introduce a skewness in the 

average 1st order response. This is shown in Figure 37. 

 

 

Figure 37 Analysis in same irregular sea as Figure 36 but not including the 2nd order wave 

drift force as formulated in AquaSim.  

 

As seen by comparing Figure 37 to Figure 36 and further to Figure 34 it is seen that the 

difference in response due to drift force is in the range of 7 between irregular seas and regular 

seas.  

This shows that  

• AquaSim can be used to calculate drift forces. 

• One should take care combining drift forces and design wave as the response to drift 

force may be largely overrated.  

  

The skewness in the 1st order response is a function of the flexibility AquaSim have to account 

for large motions and rotations. AquaSim uses the instant position of the object as alternative to 
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using the average position for the hydrodynamic loads. AquaSim may however introduce 

averaging of the wave period effect for this calculation in case that is a desired. The order of 

quality of the results will be the same as both alternatives are within 1st order accuracy.  

3.3.6. Analysis of a typical barge case 

A typical barge with mooring is shown in Figure 38.  

 
Figure 38 Analysed barge 

The main particulars of the barge are given in Table 8 and key data for the mooring system is 

given in Figure 39. 

 

Table 8 Main particulars barge and waves 

Parameter Value 

Vessel  

Length [m] 22.5 

Width [m] 17.6 

Depth [m] 3.54 

Deplacement [m2] 1401.84 

Weight [kg] 1431000 

  

Environment  

Hs 2 

Hmax 3.8 

Wave period (T, Tz) 6.4 

Current velocity y [m/s] 0.4 

Current velocity z [m/s] -0.4 
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Figure 39 Key data mooring system  

 

Figure 40 shows response in terms of displacement of the vessel in the y- direction.  

 

Figure 40 Response regular waves. Displacement in the y- direction. 5.3 minutes simulation 

time.  

Figure 41 shows axial force in mooring line 7. As seen from Figure 41and Figure 40 the mooring 

load in line 7 is in proportion to the displacement which is logical. The analysis shown in Figure 

41and Figure 40 has been analysed with a sinusoidal wave with wave height 3.8 meters. 

Line 1

Line 6

Line 5

Line 4

Line 2-3, length 27 m

Line 2

Line 8

Line 7

27.5 m 40 mm chain to bottom, 27.5 30 mm chain to vessel

y

x

Line 1-8 60 mm
Polyprop
E =  2E9 

Depth 100 m Depth 100 m

Depth 20 m
Depth 100 m
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Line 1 and 3-8
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Figure 41 Axial force in mooring line 7. 5.3 minutes simulation time.  

 

Figure 42 and Figure 43 shows results for analysis in irregular seas with Jonswap spectrum and 

Hs = 2.0 meters.  

 

 

Figure 42 Response irregular waves. Displacement in the y- direction. 5.3 minutes 

simulation time.  
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Figure 43 Axial force in mooring line, irregular wave   

 

Comparing Figure 43 and Figure 42 to Figure 41and Figure 40 it is seen that displacements are 

in proportion with forces (which it should be). It is seen that the 3rd wave of the design wave 

analysis picks up the maximum value seen in irregular seas both for displacement and load in 

line 7.  

 

Figure 44 shows a case where a conservative load along the y- axis has been introduced to the 

barge. No waves or currents are applied and static equilibrium is established. Displacement have 

been calculated for an increasing load an also the tangential stiffness have derived from the 

relation between displacement and force. The non-linear characteristic of the tangential stiffness 

is observed.  

 

 
Figure 44 Force and tangential stiffness for mooring system.  

 

As seen from Figure 44 the tangential stiffness varies this means also that the natural period 

(eigenperiod) varies as also shown in the figure.  

 

Based on the analysis carried out in this case, the following can be concluded: 
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• Drift load formulation combined with a design wave approach will over-predict 

maximum response in mass controlled systems.  

• This case did not show any significance of the natural period of the horizontal motion to 

the slow drift response. 

Based on this it can be concluded that the main issue for drift, current and wind is to obtain a 

realistic and conservative mean displacement such that when the design wave hits, the system 

gets the appropriate total response. The stiffness of the system should be investigated as rate of 

change of stiffness to the system is critical to load impact effects.    

3.3.7. Hydrodynamic loading for wave directions longitudinal to the vessel 

Consider the case seen in Figure 39. Consider waves along the x- axis in this figure. Normally a 

vessel is modelled with strip theory along the longitudinal (x- axis in this case) direction. This is 

shown schematically in Figure 31. In the barge case this means the ends are not included in the 

load formulation. In order to include the hydrodynamic loads for a load case with waves along 

the x- axis one should model the vessel with strip theory along the y- axis for the case see in 

Figure 39. In order both to handle oblique seas and not needing to model several analysis models 

there is a possibility to introduce hydrodynamic loads and drift loads to a model for both the ship 

side and ends one may use normal strip theory for one direction and 2D strip theory in the other 

direction. As an alternative one may use drag elements at the end using the drag load formulation 

there. This is a simplified approach which may be good enough. One should also note that real 

cases consist of both waves and current whereas hydrodynamic theory only considers waves 

such that current need to be added anyway.   

 

In order to discuss the magnitude of these loadings, consider a case where the end wall is large 

relative to wave length such that most of the incident wave is reflected. Assuming most of the 

wave is reflected, the hydrodynamic force can be derived as   

)sin(
2
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DFK
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Equation 42 

Where D is the draught and B is the breath of the wall sided side of the vessel. This is the 1st 

order force. Only the ship side upstream relative to the waves are considered as an assumption 

for this consideration is that most of the incident wave is reflected and only a negligible part is 

transmitted.  

From Morisons equation, for and end section with 0 volume and neglecting vessel velocity, the 

drag force will be: 

)sin()sin(
2

)(
2

1
22

kxtkxt
C

DBuuACF d

dDrag
−−== 


  

Equation 43 

Comparing the amplitudes of Equation 41 and Equation 42 (and with the assumption of deep 

water):  
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Having a wave with steepness 1/7 this can further be written as  
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Equation 45 

with a Cd of approximately 1.5. For normal cases and values this means forces into the flat 

“bow” or stern of the vessel can be underestimated.  

Consider also the drift for 
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Equation 46 

This shows that also drift load is of the same magnitude.  

Consider the 5 load variation cases for the vessel with respect to waves and current in the x- 

direction: 

1. Froude Krylov and diffraction forces accounted for by strip theory onto end section 

according to description in Section 2.5. In addition also drift forces are introduced and 

drag loads of the mean wetted hull where the drag area equals the half of the mean wetted 

hull at both sides are included.  

2. Froude Krylov and diffraction forces accounted for by strip theory onto end section 

according to description in Section 2.5. In addition also drift forces are introduced 

3. Froude Krylov and diffraction forces accounted for by strip theory onto end section 

according to description in Section 2.5. No drift forces 

4. No Froude Krylov and no drag on the ends 

5. No Froude Krylov and draft area as drag area on the ends. 

 

Results for waves along the positive x-axis and with environmental data as given in Table 9 is 

shown in Figure 45:  

Table 9 Environment 

Environment  

H  3.8 

Wave period (T) 6.4 

Wave direction [Deg] 0 

Current velocity x [m/s] 0.4 
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Figure 45 Results comparison 4 cases with different load formulation.  

 

As seen from Figure 45 results depend on load formulation.  

 

1st order hydrodynamic theory does not account for current. In the 2nd order drift term this effect 

is included. This is why case 3 and 5 does not pick up the overall average force and motion in the 

x- direction.   

Including forces to the bow and stern by the Morison equation using the mean wetted hull as  

means drag area should be used on wetted surfaces to be certain this is included in results. As 

seen from Figure 45 using a drag formulation based on the mean wetted hull picks up the motion 

rather well. This means if the vessel is not too wide compared to length this could be a sufficient 

alternative.  

The wave drift formulation accounts for both current and waves. As seen from the results using 

this without accounting for the 1st order drag area gives results that look fine.  

In case 1 all effects is included and it will in practice means it is overlapping and conservative. 

This is then the safest approach with respect to design.    

4. CONCLUSIONS 
Several analysis have been carried out validating the ability of AquaSim to calculate response of 

large mass moored vessels. 

The hydrodynamic loads to the vessel is calculated integrated with motion and forces in the 

mooring system such that nonlinear response is accounted for. This document shows how forces 

from hydrodynamic loads are introduced to AquaSim. The document describes the options 

AquaSim users have to account for the load components which are of importance for response.     

 

Relevant natural periods of systems and loads occurring should be carefully evaluated by the 

analyst to ensure that all relevant load-response-effects are considered. 
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The importance of velocity and mass of floating object, stiffness properties of moorings are 

shown both through analysis and analytical formulae. Analysis using AquaSim compares well 

with analytical formulae for cases where analytic formula can be established. 

 

AquaSim shows good versatility.  
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